Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Answers : a) [74.0353,74.0367] b)[74.035, infinity) A manufacturer produces pist

ID: 2957624 • Letter: A

Question

Answers : a) [74.0353,74.0367] b)[74.035, infinity)

A manufacturer produces piston rings for an automobile engine. It is known that ring diameter is normally distributed with sigma = 0.001 millimeters. A random sample of 15 rings has a mean diameter of x- = 74.036 millimeters. Construct a 99% two-sided confidence interval on the mean piston ring diameter. Construct a 99% lower-confidence bound on the mean piston ring diameter. Compare the lower bound of this confidence interval with the one in part (a).

Explanation / Answer

a)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    74.036          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    0.001          
n = sample size =    15          
              
Thus,              
Margin of Error E =    0.000665076          
Lower bound =    74.03533492          
Upper bound =    74.03666508          
              
Thus, the confidence interval is              
              
(   74.03533492   ,   74.03666508   )

********************

b)

Note that              

      
Lower Bound = X - z(alpha) * s / sqrt(n)              
              
where              
alpha = (1 - confidence level) =    0.05          
X = sample mean =    74.036          
z(alpha) = critical z for the confidence interval =    1.644853627          
s = sample standard deviation =    0.001          
n = sample size =    15          
              
Thus,              

Lower bound =    74.0355753          

Thus, the confidence interval is u > 74.0356 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote