In the following regression, X = total assets ($ billions), Y = total revenue ($
ID: 2959039 • Letter: I
Question
In the following regression, X = total assets ($ billions), Y = total revenue ($ billions), and n = 64 large banks. (a) Write the fitted regression equation. (b) State the degrees of freedom for a two-tailed test for zero slope, and use Appendix D to find the critical value at a = .05. (c) What is your conclusion about the slope? (d) Interpret the 95 percent confidence limits for the slope. (e) Verify that F = t2 for the slope. (f) In your own words, describe the fit of this regression.
R2 = 0.519
Std. Error = 6.977
n = 64
ANOVA Table
Source SS df MS F p-value
Regression 3260.0981 1 3260.0981 66.97 1.90E-11
Residual 3018.3339 62 48.6828
TOTAL 6278.4320 63
REGRESSION OUTPUT Confidence Interval
Variables Coefficients Std. Error t(df=33) p-value 95%lower 95%upper
Intercept 6.5763 1.9254 3.416 0.0011 2.7275 10.4252
X1 0.0452 0.0055 8.183 190E-11 0.0342 0.0563
Explanation / Answer
(a) Write the fitted regression equation. Y = 6.5763 + 0.0452 X ------------------------------------------------------------------------------------------------------------- (b) State the degrees of freedom for a two-tailed test for zero slope, and use Appendix D to find the critical value at a = .05. Degrees of freedom = n-2 = 64-2 = 62 Critical value = t(0.05/2 , 62) = 1.9989 (check student t table) --------------------------------------------------------------------------------------------------------------- (c) What is your conclusion about the slope? The t value is 8.183. |t| = 8.183 > 1.9989(critical value). The null hypothesis is rejected. The slope is significantly different from 0. --------------------------------------------------------------------------------------------------------------- (d) Interpret the 95 percent confidence limits for the slope. The 95% confidence interval for the slope is (0.0342, 0.0563). --------------------------------------------------------------------------------------------------------------- (e) Verify that F = t2 for the slope. F = 66.97 t = 8.183 t^2=8.183^2= 66.96149?66.97 So F=t^2 -------------------------------------------------------------------------------------------------------------- (f) In your own words, describe the fit of this regression. The p-value is 1.90E-11 < 0.01. So the F is significant. So regression model is good fit to the data.Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.