A block of mass m is dropped from a height h above a spring k. as shown in Fig.
ID: 2979989 • Letter: A
Question
Explanation / Answer
x'' + w^2 x = g so Complimentary solution : (D^2 + w^2 )x =0 (D^2+w^2) =0 D = iw and D = - iw so x = Ae^(iwt) + Be^(-iwt) = C cos wt + B sin wt Particular solution x = g/(D^2+w^2) = (1+D^2/w^2)^(-1) * g/w^2 = mg/k so x (t) = C cos wt + B sin wt + mg/k at t =0 ; x =0 so C = - mg/k x'(t) = -Cw sin wt + Bw cos wt at t=0 ; x'(0) = sqrt (2*g*h) x'(0) = Bw = sqrt (2*g*h) B = sqrt(2*g*h) / w A) -mg/k * cos wt + sqrt(2*g*h) / w * sin wt B) mg/k C) x(t) = -mg/k * cos wt + sqrt(2*g*h) / w * sin wt + mg/k
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.