Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

USING MatLab: One of my students had asked me this question,but i\'m old school

ID: 3008564 • Letter: U

Question

USING MatLab:

One of my students had asked me this question,but i'm old school i'm not fully familiar with coding so please help.

*Write down the code for each part

5. Consider the function/()=t6_4f4-2t3+3t2 +2t on the interval [-3/2,5/2] Graph the function on the given interval. Determine how many local extrema the function has. In particular, produce another graph which is zoomed in closer to x command Use MATLAB to differentiate f(t) and identify the critical points using fzero(). You should also produce a graph to help you determine the "guess" value to use with fzero). a. b. to confirm your result using the axis0) c. d. Graph f"(t) on the interval -1.2sts-0.8. How does the graph establish that x--l is in fact an inflection point of f(t) ?

Explanation / Answer

A) syms t                                    B)syms t

   t=[-3/2:4:5/2];                                       t=[-3/2:4:5/2];

   f=t.^6-4*t.^4-2*t.^3+3*t.^2+2*t;                f=t.^6-4*t.^4-2*t.^3+3*t.^2+2*t;

   plot(t,f,'r')                                             ezplot(f,[-3/2,5/2])

                                                             subs(f,-1)

C) syms t                                                           D)syms t

f=t.^6-4*t.^4-2*t.^3+3*t.^2+2*t;                                  t=[-1.2:0.4:-0.8];

diff(f)                                                                      f=t.^6-4*t.^4-2*t.^3+3*t.^2+2*t;

ezplot(f)                                                                 der1=differentiate(f,t)

         f=inline("t.^6-4*t.^4-2*t.^3+3*t.^2+2*t");               differentiate(der2,x,-1)

          diff(f)=0

          ezplot("guess")