In [x^3 squareroot x^2 + 1/(x + 1)^4 ln[x^4 squareroot x^2 + 3/(x + 3)^5] log [1
ID: 3014503 • Letter: I
Question
In [x^3 squareroot x^2 + 1/(x + 1)^4 ln[x^4 squareroot x^2 + 3/(x + 3)^5] log [10x^2 3 squareroot 1 - x/7(x + 1)^2 log[100x^3 3 squareroot 5 - x/3(x + 7)^2 In Exercises 41-70, use properties of logarithms to condense each logarithmic expression. Write the expression as a single logarithm whose coefficient is 1. Where possible, evaluate logarithmic expressions without using a calculator. log 5 + log 2 log 250 + log 4 ln x + ln 7 ln x + ln 3 log_2 96 - log_2 3 log_3 405 - log_3 5 log(2x + 5) - log x log(3x + 7) - log x log x + 3 log y log x + 7 log y ln x + In y lnx + In y log_bx + 6log_by 5 log_b x + 6 log_b y 5 ln x - 2 ln y 7 lnx - 3 ln y 3 lnx - 1/3 ln y 2 ln x - 1/2 ln y 4 ln(x + 6) - 3 ln x 8 ln(x + 9) - 4 ln x 3 ln x + 5 ln y - 6 ln z 4 ln x + 7 ln y - 3 ln z 1/2 ln(logx + log y) 1/3 (log_4 x - log_4 y) 1/2(log_5 x + log_5 y) - 2 log_5(x + 1) 1/3 (log_4 x - log_4 y) + 2 log_4(x + 1) 1/3[2 ln (x + 5) - ln x - ln(x^2 - 4)] 1/3[5 ln (x + 6) - ln x - (x^2 - 25)]Explanation / Answer
41.
Answer:
Given : log 5 + log2
We use logarithim formula
log A + log B = logA*B
as we compare
here A = 5 and B= 2
log5 + log2 = log (5 *2)
= log10
Here base of log is 10
therefore log10 = log10 10 = 1
Answer : 1
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.