Let f be the function defined by f = ((-3. 4), (-2, 7), (-1, 2), (0. 4), (1, 2),
ID: 3017064 • Letter: L
Question
Let f be the function defined by f = ((-3. 4), (-2, 7), (-1, 2), (0. 4), (1, 2), (2, 2), (3.-8)) and let g be the function defined g = ((-3,-7). (-2, 8), (-1,-5), (0, 6), (1, -9), (2, 7), (3, 2)) does not exist, enter DNE.) (f compositefunction g(3) ____ Let f be the function defined by ((-3, 4), (-2, 7), (-1, 2), (0, 4), (1, 2), (2, 2), (3, -8)) and let g be the function defined g = ((-3,7), (-2,8), (-1, -4), (0, 6), (1, -9), (2, 7), (3, 2)} does not exist, enter DNE.) f(g(-1)) DNE Let f be the function defined by f = ((-3, 4), (-2, 7), (-1, 1), (0, -1), (1, 4), (2. 1), (3,-6)) and let g be the function defined g = ((-3,9),middot(-2, 1), (-1, -7), (0, 0), (1, -5), (2, 6) answer does not exist, enter DNE.) (f compositefunction f) (0) ______ Let f be the function defined by f = ((-3,4), (-2, 2), (-1,0), (0,1),(1,3),(2,4),(3,-1)) and let g be the function defined g = ((-3,-2), (-2,0), (-1, -4), (0, 0),(1,-3), (2, 1), does not exist, enter DNE.) n times (g compositefunction g compositefunction compositefunction g) ______Explanation / Answer
fog(3)
f(g(3))
f(2) because g(3) = 2
2
2 ---> ANSWER
---------------------------------------------------------
2nd one's correct anyways
---------------------------------------------------------
fof(0)
f[f(0)]
f(-1)
1
1 ---> ANSWER
-----------------------------------------------------------
Notice that g(0) = 0
as in (0,0) is a point on function g
So, gogogogog(0) is just ZERO
0 ----> ANSWER
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.