Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A study of nonfatal occupational injuries in the United States found that about

ID: 3022541 • Letter: A

Question

A study of nonfatal occupational injuries in the United States found that about 31% of all injuries in the service sector involved the back. The National Institute for Occupational Safety and Health (NIOSH) recommended conducting a comprehensive ergonomics assessment of jobs and work stations. In response to this information, Mark Glassmeyer developed a unique erogonic handcard to help field service engineers be more productive and also to reduce back injuries from lifting parts and equipment during service calls. Using a sample of 382 field service engineers who were provided with these carts, Mark collected the following data:

                                            Year 1 (without Cart)                        Year 2 (with cart)

Average call time                  8.27 hours                                       7.98 hours

Standard deviation call time 1.36 hours                                       1.21 hours

Proportion of back injuries    0.018                                               0.010

Find 95% confidence intervals for the average call times and proportion of back injuries in each year. What conclusions would you reach based on your results?

Explanation / Answer

FOR YEAR 1, AVERAGE CALL TIME:

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    8.27          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    1.36          
n = sample size =    382          
              
Thus,              
Margin of Error E =    0.136381455          
Lower bound =    8.133618545          
Upper bound =    8.406381455          
              
Thus, the confidence interval is              
              
(   8.133618545   ,   8.406381455   )

***************************

FOR YEAR 2, AVERAGE CALL TIME:

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    7.98          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    1.21          
n = sample size =    382          
              
Thus,              
Margin of Error E =    0.121339382          
Lower bound =    7.858660618          
Upper bound =    8.101339382          
              
Thus, the confidence interval is              
              
(   7.858660618   ,   8.101339382   )

******************************

FOR YEAR 1, PROPORTION OF BACK INJURIES:

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.018          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.006802371          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          
Thus,              
Margin of error = z(alpha/2)*sp =    0.013332402          
lower bound = p^ - z(alpha/2) * sp =   0.004667598          
upper bound = p^ + z(alpha/2) * sp =    0.031332402          
              
Thus, the confidence interval is              
              
(   0.004667598   ,   0.031332402   )

************************************

FOR YEAR 2, PROPORTION OF BACK INJURIES:

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.01          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.005090799          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          
Thus,              
Margin of error = z(alpha/2)*sp =    0.009977782          
lower bound = p^ - z(alpha/2) * sp =   2.22181E-05          
upper bound = p^ + z(alpha/2) * sp =    0.019977782          
              
Thus, the confidence interval is              
              
(   2.22181E-05   ,   0.019977782   )

*****************************************

CONCLUSION:

We can see that there is a significant reduction in average call time, as the confidence intervals did not intersect. However, this reduction did not yield a significant reduction in the proportion of back injuries, as the proportion confidence intervals intersected.