Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The life in hours of a 75 watt light bulb is known to be normally distributed wi

ID: 3022798 • Letter: T

Question

The life in hours of a 75 watt light bulb is known to be normally distributed with theta= 25 hours. A random sample of 20 bulbs has a mean life of xbar = 1014 hours.
B) construct a 99% two sided confidence interval on the mean life. D) construct a 99% lower-confidence bound on the mean life. ENGR 3800 Quality Control for Engineers Class Problems 4 1. The life in hours of a 75-watt light bulb is known to be normally distributed with -25 hours. A random sample of 20 bulbs has a mean life of 1014 hours. (a) Construct a 95% two-sided confidence interval on the mean life. (b) Construct a 99% two-sided confidence interval on the mean life. (c) Construct a 95% lower-confidence bound on the mean life. (d) Construct a 99% lower-confidence bound on the mean life. b)(x (1.evs). (1014-11 ,4 s)25.): (jalu-Mgsz)

Explanation / Answer

B)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    1014          
z(alpha/2) = critical z for the confidence interval =    2.575829304          
s = sample standard deviation =    25          
n = sample size =    20          
              
Thus,              
Margin of Error E =    14.39932355          
Lower bound =    999.6006764          
Upper bound =    1028.399324          
              
Thus, the confidence interval is              
              
(   999.6006764   ,   1028.399324   ) [ANSWER]

************************

d)

Note that              
      
Lower Bound = X - z(alpha) * s / sqrt(n)              
              
where              
alpha = 1 - confidence level =    0.01          

X = sample mean =    1014          
z(alpha) = critical z for the confidence interval =    2.326347874          
s = sample standard deviation =    25          
n = sample size =    20          
              
Thus,              

Lower bound =    1000.99532          
              
Thus, the confidence interval is

              
u > 1000.99532 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote