Q10. Solve the equation log 4 (x + 2) = -1 a. {-7} b. {-7/4} c. {9/4} d. {9} Q12
ID: 3037749 • Letter: Q
Question
Q10. Solve the equation log 4 (x + 2) = -1
a. {-7}
b. {-7/4}
c. {9/4}
d. {9}
Q12. Find the inverse of the function and state its domain and range.
{(-3, 4), (-1, 5), (0, 2), (2, 6), (5, 7)}
a. {(3, 4), (1, 5), (0, 2), (-2, 6), (-5, 7)}; D = {3, 1, 0, -2, -5}; R = {2, 4, 5, 6, 7}
b. {(-3, -4), (-1, -5), (0, -2), (2, -6), (5, -7)}; D = {-3, -1, 0, 2, 5}; R = {-7, -6, -5, -4, -2}
c. {(4, -3), (5, -1), (2, 0), (6, 2), (7, 5)} D = {2, 4, 5, 6, 7}; R = {-3, -1, 0, 2, 5}
d. {(3, -4), (1, -5), (0, -2), (-2, -6), (-5, -7)}; D = {3, 1, 0, -2, -5}; R = {-7, -6, -5, -4, -2}
Q13. Find the domain of the composite function f g if f(x) = 28/x and g(x) = -8/(x - 7).
a. {x | x 7}
b. {x | x 0, x 7, x 4}
c. {x | x 7, x 0}
d. {x | x is any real number}
Q14. Express 6log b m - log b n as a single logarithm.
a. log b m6 ÷ log b n
b. log b (m6 - n)
c. log b (m6/n)
d. log b (6m/n)
Q15. In 1990, the population of a country was estimated at 4 million. For any subsequent year the population, P(t) (in millions), can be modeled by the equation P(t) = 240/(5 + 54.99e-0.0208t), where t is the number of years since 1990. Estimate the year when the population will be 21 million.
a. approximately the year 2093
b. approximately the year 2041
c. approximately the year 2088
d. approximately the year 2016
Q16. If 5x = 6,what does 5-2x equal?
a. 1/36
b. 36
c. 1/12
d. -36
Q17. For the functions f(x) = x2 + 4 and g(x) = x2 + 1, find the composite function (f g)(x).
a. x4 + 5
b. x4 + 17
c. x4 + 2x2 + 5
d. x4 + 8x2 + 17
Q18. A size 6 dress in Country C is size 52 in Country D. A function that converts dress sizes in Country C to those in Country D is f(x) = 2(x + 20). Find a formula for the inverse of the function described.
a. f -1(x) = (x - 20)/2
b. f -1(x) = x - 20
c. f -1(x) = (x/2) - 20
d. f -1(x) = (x/2) + 20
Q19. If f(x) = 4x and g(x) = 12, find the point of intersection of the graphs of f and g by solving f(x) = g(x). Give an exact answer.
a. (log 4 12, 12)
b. (log 4 12, 4)
c. (log 4 12, 0)
d. (12, 12)
Q20. Find functions f and g so that f g = H(x) = (5 - 2x3)2.
a. f(x) = 5 - 2x3 ; g(x) = x2
b. f(x) = (5 - 2x)3 ; g(x) = x2
c. f(x) = x2 ; g(x) = 5 - 2x3
d. f(x) = x3 ; g(x) = (5 - 2x)2
Explanation / Answer
Dear Student
Thank you for using CHegg !!
Question 10)
Given
log4 (x+2) = -1
=>
(x+2) = 4^(-1)
x+2 = 1/4
x = 1/4 - 2
x = -7/4
Solution
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.