TABLE 4 FDistribution Entries in this table provide the values of Faig that corr
ID: 3039879 • Letter: T
Question
TABLE 4 FDistribution Entries in this table provide the values of Faig that correspond to a given upper-tail area a and a specified number of degrees of freedom in the numerator df, and degrees of freedom in the denominator df For example for =0.05, df, = 8, and df.-6,RFRA 4.15)=0.05. dfi 58.9159.44 59.86 60.19 61.22 6205 62.69 63.01 63.2 161.45 19950 21571 224.58 230.16 233.99 23677 23a88 24054 241.88 245.95 24926 251 25304 2540 96863 984.87 998.08 1008.12 1013.17 10172 0.10 39.86 495 5359 55.83 57.24582 0.05 0.025 647.79 799.50 86416 8958 921.85 93711 94822 95666 96328 9 0.01405218 49995o 5403.35 562458 5763.65 585899 5928.36 5981.07 602247 60558 6157 28 623983 6302.52 633411 6359,s 853 9.00 6 9.24 9.29 933 935 937 938 9.39 9429AS 947 9.48 94 1925 19.30 1933 1935 1937 1938 19.40 1943 1946 19.48 1949 194 1851 1900 19.16 3851 39.00 3917 3925 39.30 3933 3936 3937 3939 39.40 3943 396 39.48 39.49 395 98.50 99.00 99.17 09.25 99.30 9933 9936 9937 9939 9940 9943 9946 9948 546 39 534 5,31 28 527 25 524 5.23 5.20 5.17 5.15 $14 5.1 901 894 889 8.85 881 879 870 8.63 858 8SS 5 0.01 5.54 10.13 0.10 14.42 1425 14.12 14.01 13.96 139 3412 3082 2946 2871 2824 2791 2767 27.49 2735 2723 2687 2658 26.35 2624 26.15 394 3.92 3.87 383 3.80 3.78 37 1744 1604 154 15.10 1488 1473 1462 1454 1447 1 454 432 419 41 40401 398395 7.71 694 659 639 6.26 616 609 604 6006 5.86 5.77 5.70 5.66 56 SHIBAExplanation / Answer
MSE = 127/75 = 1.693333
MS(Columns) = 1051/2 = 525.5
F(Columns) = MS(Columns)/MSE = 525.5/1.693333 = 310.33
(We are getting 310.40 if we divide 525.50 by 1.693, but here it seems that they are not using the approximated value of MSE, that is, 1.693. Instead, they are using the recurring value, that is, 1.69333)
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.