Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The weight of a small Starbucks coffee is a normally distributed random variable

ID: 3046024 • Letter: T

Question

The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 365 grams and a standard deviation of 14 grams. Find the weight that corresponds to each event. (Use Excel or Appendix C to calculate the z-value. Round your final answers to 2 decimal places.)

  

The weight of a small Starbucks coffee is a normally distributed random variable with a mean of 365 grams and a standard deviation of 14 grams. Find the weight that corresponds to each event. (Use Excel or Appendix C to calculate the z-value. Round your final answers to 2 decimal places.)

Explanation / Answer

Given that

X ~ N( mu = 365, sigma2 = 142)

a) Highest 10 percent

i.e P(a < X < b) = 0.10

P( ( a-mu)/sigma < (x-mu)/sigma < ( b-mu) / sigma) = 0.10

P( (a-365)/14 < z < (b-365)/14) = 0.10 where z ~ N(0,1)

From Normal probability table

P( 1.28 < z < 3) = 0.10

hence (a-365)/14 =1.28 and (b-365) /14 =3

a = 365 +1.28*14 and b = 365 + 3*14

a =382.92 and b= 407

b) Middle 50 percent

i.e P(a < X < b) =0.50

P( ( a-mu)/sigma < (x-mu)/sigma < ( b-mu) / sigma) = 0.50

P( (a-365)/14 < z < (b-365)/14) = 0.50 where z ~ N(0,1)

From Normal probability table

P( -0.68 < z < 0.68) = 0.50

hence (a-365)/14 =-0.68 and (b-365) /14 =0.68

a = 365 - 0.68*14 and b = 365 + 0.68*14

a =355.48 and b= 374.52

c) Highest 80 percent

i.e P(a < X < b) =0.80

P( ( a-mu)/sigma < (x-mu)/sigma < ( b-mu) / sigma) = 0.80

P( (a-365)/14 < z < (b-365)/14) = 0.80 where z ~ N(0,1)

From Normal probability table

P(-0.84 < z <3) = 0.80

hence (a-365)/14 = -0.84 and (b-365) /14 =3

a = 365 - 0.84*14 and b = 365 + 3 *14

a = 353.24 and b = 407

d) Lowest 10 percent

i.e P(a < X < b) =10

P( ( a-mu)/sigma < (x-mu)/sigma < ( b-mu) / sigma) = 10

P( (a-365)/14 < z < (b-365)/14) = 0.50 where z ~ N(0,1)

From Normal probability table

P(-3 < z < -1.28) = 0.10

hence (a-365)/14 =-3 and (b-365) /14 =-1.28

a = 365 - 3*14 and b = 365 -1.28*14

a = 323 and b= 347.08

a Highest 10 percent 382.92 to 407 b Middle 50 percent 355.48 to 374.52 c Highest 80 percent 353.24 to 407 d Lowest 10 percent 323 to 347.08