If E[X] = 1 and Var(X) = 5, (a) Find E[X^2]. (b)Derive the expression for Var(ax
ID: 3047260 • Letter: I
Question
If E[X] = 1 and Var(X) = 5, (a) Find E[X^2]. (b)Derive the expression for Var(ax + b) where a and b is constant. c) Find Var(2x+4) and E[2x+4].If E[X] = 1 and Var(X) = 5, (a) Find E[X^2]. (b)Derive the expression for Var(ax + b) where a and b is constant. c) Find Var(2x+4) and E[2x+4].
If E[X] = 1 and Var(X) = 5, (a) Find E[X^2]. (b)Derive the expression for Var(ax + b) where a and b is constant. c) Find Var(2x+4) and E[2x+4]. If E[X] = 1 and Var(X) = 5, (a) Find E[X^2]. (b)Derive the expression for Var(ax + b) where a and b is constant. c) Find Var(2x+4) and E[2x+4].
Explanation / Answer
Here' the answer to the question:
a. We now that
Var(X) = E(X^2) - E(X)^2
5 = E(X^2) - 1^2
E(X^2) = 6
b. Var(ax+b) = E((ax+b)^2) - E(ax+b)^2
= E(a^2x^2 + b^2 + 2abx) - (a^2*E(x)^2 + b^2+ 2abxE(x) )
= a^2 E(x^2)+ b^2 +2 abE(x) - a^2E(x)^2 - b^2 -2abxE(x)
= a^2 E(x^2) - a^2 E(X)^2
= a^2 (E (x^2) - E(X)^2)
= a^2 Var(x)
So, Var(ax + b) = a^2 Var(x)
<hence, proved>
c.Var(2x+4) = 2^2 Var(X) + var(4) = 4*Var(x) + 0 = 4*5 = 20
E[2x+4] = 2*E(X) + E(4) = 2*1+4 = 6
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.