Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Questions : Run a regression model to estimate the cost of a building using aver

ID: 3047971 • Letter: Q

Question

Questions : Run a regression model to estimate the cost of a building using average storey height (mean centered) and total floor area (mean centered)

question 2: Run a regression model to estimate the cost of a building using average storey height (mean centered), total floor area (mean centered), and the type of construction (dummy coded with reinforced concrete as the control group)

Building type Average floor area (m2) Total floor area (m2) avg story height(cms) COST (HK$) 1 1852 81478 410 1467000000 1 1608 64313 411 1150000000 1 1430 55783 403 1028000000 1 1562 57794 390 1100000000 1 1109 37695 391 728000000 1 905 28048 382 558000000 1 1852 81478 410 1467000000 1 901 30617 391 631000000 1 1727 69062 400 1223000000 1 1161 37148 394 761000000 1 1004 37141 400 713000000 1 1216 38912 390 784000000 1 2007 88302 422 1593000000 1 2983 173000 440 2649000000 2 1523 70080 372 1210000000 2 912 28286 370 607000000 2 1343 53715 382 977000000 2 1175 32908 381 700000000 2 1203 40902 393 811000000 2 1393 52951 392 1001000000 2 713 20681 375 468000000 2 1047 37681 411 747000000 2 1506 63270 421 1156000000 2 1642 70624 423 1268000000 2 1848 73936 403 1333000000 2 1627 60190 402 1162000000 2 1301 40321 384 864000000 2 905 25330 405 561000000 2 1727 72514 400 1303000000 2 1414 52318 392 1013000000 2 2001 76022 431 1487000000 2 400 9200 380 263000000 2 3100 102190 454 2112000000 2 1677 83860 410 1519000000 2 2415 130032 420 2045000000 2 1555 46637 410 1025000000 2 792 20596 420 540000000 Building Type 1 Reinforced Concrete 2 Steel

Explanation / Answer

Question 1: Run a regression model to estimate the cost of a building using average storey height (mean centered) and total floor area (mean centered)

Solution:

Required regression model for the estimation of the cost of a building is given as below:

Regression Statistics

Multiple R

0.989851366

R Square

0.979805727

Adjusted R Square

0.978617829

Standard Error

72022022.44

Observations

37

ANOVA

df

SS

MS

F

Significance F

Regression

2

8.557E+18

4.2785E+18

824.82284

0.00

Residual

34

1.76364E+17

5.18717E+15

Total

36

8.73336E+18

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-1007498437

323442007.4

-3.114927604

0.0037239

-1664811677

-350185197.2

Total floor area (m2)

13965.33792

504.2764764

27.69381197

6.543E-25

12940.52482

14990.15101

avg story height(cms)

3185037.528

851125.288

3.742148862

0.0006735

1455342.845

4914732.212

For this regression model, the p-value is given as 0.00 approximately. So we reject the null hypothesis at 5% level of significance. Given regression model by using two independent variables as total floor area and average story height is statistically significant and we can use this regression model for future estimation of the dependent variable cost of a building. The R square value or coefficient of determination for this regression is given as 97.98% which means about 97.98% of the variation in the dependent variable cost is explained by the independent variables.

Question 2: Run a regression model to estimate the cost of a building using average storey height (mean centered), total floor area (mean centered), and the type of construction (dummy coded with reinforced concrete as the control group)

Solution:

Required regression model for the estimation of the cost of a building is given as below:

Regression Statistics

Multiple R

0.990412949

R Square

0.98091781

Adjusted R Square

0.979183065

Standard Error

71063697.67

Observations

37

ANOVA

df

SS

MS

F

Significance F

Regression

3

8.56671E+18

2.85557E+18

565.45375

1.98288E-28

Residual

33

1.66652E+17

5.05005E+15

Total

36

8.73336E+18

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-1034024776

319710997.5

-3.234248381

0.0027704

-1684481688

-383567864.2

Building type

33747823.36

24335169.52

1.386792204

0.1748024

-15762451.04

83258097.77

Total floor area (m2)

14062.25239

502.4502552

27.98735247

1.438E-24

13040.00967

15084.49512

avg story height(cms)

3100861.419

841990.9177

3.682773001

0.0008198

1387818.025

4813904.813

For this regression model, the p-value is given as 0.00 approximately. This means, above regression model is statistically significant and we can use this regression model for the estimation of cost of a building for future use. For this regression model R square value or coefficient of determination is given as 0.9809, which means about 98.09% of the variation in the cost of a building is explained by the independent variables.

Regression Statistics

Multiple R

0.989851366

R Square

0.979805727

Adjusted R Square

0.978617829

Standard Error

72022022.44

Observations

37

ANOVA

df

SS

MS

F

Significance F

Regression

2

8.557E+18

4.2785E+18

824.82284

0.00

Residual

34

1.76364E+17

5.18717E+15

Total

36

8.73336E+18

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

-1007498437

323442007.4

-3.114927604

0.0037239

-1664811677

-350185197.2

Total floor area (m2)

13965.33792

504.2764764

27.69381197

6.543E-25

12940.52482

14990.15101

avg story height(cms)

3185037.528

851125.288

3.742148862

0.0006735

1455342.845

4914732.212