Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Need stats/excel homework help Create a single ression equation for starting sal

ID: 3060323 • Letter: N

Question

Need stats/excel homework help

Create a single ression equation for starting salaries using the independant variable that has the closest relationships with the salaries. And the reason why you chose that variable.

Student School_Ranking GPA Experience Salary 1 78 2.92 3 73,590 2 56 3.84 9 87,000 3 23 3.04 6 76,970 4 67 3.20 6 79,320 5 56 3.61 7 79,530 6 78 2.99 5 71,040 7 68 3.78 8 82,050 8 89 3.20 5 78,890 9 37 3.42 7 82,170 10 67 3.05 5 76,120 11 48 3.12 4 77,500 12 78 3.56 7 83,920 13 56 3.01 5 71,800 14 25 3.15 6 77,000 15 68 3.05 7 79,000 16 36 3.24 5 77,800 17 76 3.25 6 80,600 18 78 3.78 9 87,000 19 67 3.12 4 78,450 20 67 3.24 8 80,600 21 15 2.98 5 74,900 22 29 3.24 6 79,200 23 49 3.08 4 77,000 24 67 3.00 6 77,900 25 39 2.95 4 76,950 26 81 3.01 5 76,800 27 54 3.23 7 79,300 28 72 3.01 2 72,120 29 73 3.45 7 83,900 30 78 3.85 8 85,200 31 51 3.00 5 77,300 32 86 3.23 6 83,500 33 76 3.80 7 77,000 34 30 3.08 5 75,000 35 58 3.15 7 79,200 36 86 3.35 7 80,400 37 34 3.09 7 80,200 38 72 3.35 9 84,800 39 38 3.16 3 72,800 40 89 2.76 7 75,000

Explanation / Answer

First of all we model the equation using all the three independent variables i.e. School_Ranking and Experience. Please see below the excel output: -

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.840

R Square

0.705

Adjusted R Square

0.681

Standard Error

2242.363

Observations

40

ANOVA

df

SS

MS

F

Significance F

Regression

3

433447942.730

144482647.577

28.735

0.000

Residual

36

181014847.270

5028190.202

Total

39

614462790.000

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

53086.914

4627.483

11.472

0.000

43701.944

62471.884

School_Ranking

9.738

18.157

0.536

0.595

-27.086

46.561

GPA

5449.971

1721.276

3.166

0.003

1959.061

8940.880

Experience

1243.192

286.806

4.335

0.000

661.523

1824.861

As we can see based on the p-value, School_Ranking is not a significant variable. Hence, we would remove that and rerun and this would be our final model

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.84

R Square

0.70

Adjusted R Square

0.69

Standard Error

2220.67

Observations

40

ANOVA

df

SS

MS

F

Significance F

Regression

2

432001745.96

216000872.98

43.80

0.00

Residual

37

182461044.04

4931379.57

Total

39

614462790.00

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

53295.45

4566.51

11.67

0.00

44042.82

62548.08

GPA

5539.80

1696.54

3.27

0.00

2102.29

8977.30

Experience

1257.26

282.84

4.45

0.00

684.17

1830.35

SUMMARY OUTPUT

Regression Statistics

Multiple R

0.840

R Square

0.705

Adjusted R Square

0.681

Standard Error

2242.363

Observations

40

ANOVA

df

SS

MS

F

Significance F

Regression

3

433447942.730

144482647.577

28.735

0.000

Residual

36

181014847.270

5028190.202

Total

39

614462790.000

Coefficients

Standard Error

t Stat

P-value

Lower 95%

Upper 95%

Intercept

53086.914

4627.483

11.472

0.000

43701.944

62471.884

School_Ranking

9.738

18.157

0.536

0.595

-27.086

46.561

GPA

5449.971

1721.276

3.166

0.003

1959.061

8940.880

Experience

1243.192

286.806

4.335

0.000

661.523

1824.861

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote