The accompanying table shows a random sample of eight laptops and the battery li
ID: 3060960 • Letter: T
Question
The accompanying table shows a random sample of eight laptops and the battery life, y, and corresponding screen size, x, of each. The regression line for the data is y = 5.3844 - .1056x, and SSE = 1.355.
Table showing battery life and screen size for 8 laptops.
Battery Life
Screen Size
3.8
15.4
3.6
17.6
4.3
14.9
3.9
12.5
2.9
14.2
4.3
12.8
4.3
11.3
4.2
12.8
Using alpha = 0.05, test for the significance of the regression slope.
Construct a 95% confidence interval for the population slope.
UCL =
LCL =
(Round to two decimal places as needed.)
Battery Life
Screen Size
3.8
15.4
3.6
17.6
4.3
14.9
3.9
12.5
2.9
14.2
4.3
12.8
4.3
11.3
4.2
12.8
Explanation / Answer
The statistical software output for this problem is:
Simple linear regression results:
Dependent Variable: Screen Size
Independent Variable: Battery Life
Screen Size = 20.909663 - 1.7820225 Battery Life
Sample size: 8
R (correlation coefficient) = -0.43381257
R-sq = 0.18819334
Estimate of error standard deviation: 1.9518991
Parameter estimates:
Analysis of variance table for regression model:
Hence,
95% confidence interval for population slope is:
UCL = 1.92
LCL = -5.48
Parameter Estimate Std. Err. DF 95% L. Limit 95% U. Limit Intercept 20.909663 5.9518929 6 6.3459061 35.47342 Slope -1.7820225 1.5109905 6 -5.4792828 1.9152379Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.