You collect data on 26 metropolitan areas to analyze average monthly debt paymen
ID: 3061782 • Letter: Y
Question
You collect data on 26 metropolitan areas to analyze average monthly debt payments in terms of income and the unemployment rate. The data are shown in the accompanying table. Use Table 4 Income (in $1,000s) Unemployment Metropolitan Area Washington, D.C Seattle Baltimore Boston Denver San Francisco San Diego Sacramento Los Angeles Chicago Philadelphia Minneapolis New York Atlanta Dallas Phoenix Portland Cincinnati Houston Columbus St. Louis Miami Detroit Cleveland Tampa Pittsburgh $103.5 $1,285 1,135 1,133 1,133 1,104 1,098 1,076 1,045 1,024 1,017 1,011 1,011 989 986 970 957 948 920 889 63% 82.2 89.5 75.9 93.4 75.5 73.1 68.2 75.1 78.3 84.0 78.3 9.3 10.6 12.4 12.9 9.7 9.2 7.0 9.3 10.3 68.3 66.6 10.2 69.5 65.1 68.6 68.3 60.2 69.8 64.8 59.4 63.0 8.7 14.5 15.7 9.6 12.6 886 867 832 812 791 763 SOURCE: eFannieMae.com; bls.com; and Experian.com Click here for the Excel Data File a-1. Estimate the model Debt-Ao + Anc + 2Unemp + . (Round your answers to 4 decimal places.) Debt= 198.9956 + 10.5122 Inc + 0.6186 UnempExplanation / Answer
### By using R command
> Inc=c(103.5,81.7,82.2,89.5,75.9,93.4,75.5,73.1,68.2,75.1,78.3,84,78.3,71.8,68.3,66.6,71.2,69.5,65.1,68.6,68.3,60.2,69.8,64.8,59.4,63)
> Inc
[1] 103.5 81.7 82.2 89.5 75.9 93.4 75.5 73.1 68.2 75.1 78.3 84.0
[13] 78.3 71.8 68.3 66.6 71.2 69.5 65.1 68.6 68.3 60.2 69.8 64.8
[25] 59.4 63.0
> Une=c(6.3,8.5,8.1,7.6,8.1,9.3,10.6,12.4,12.9,9.7,9.2,7,9.3,10.3,8.4,9.1,10.2,9.3,8.7,8.3,9.9,14.5,15.7,9.6,12.6,8.3)
> Une
[1] 6.3 8.5 8.1 7.6 8.1 9.3 10.6 12.4 12.9 9.7 9.2 7.0 9.3 10.3 8.4
[16] 9.1 10.2 9.3 8.7 8.3 9.9 14.5 15.7 9.6 12.6 8.3
> Debt=c(1285,1135,1133,1133,1104,1098,1076,1045,1024,1017,1011,1011,989,986,970,957,948,920,889,888,886,867,832,812,791,763)
> Debt
[1] 1285 1135 1133 1133 1104 1098 1076 1045 1024 1017 1011 1011 989 986 970
[16] 957 948 920 889 888 886 867 832 812 791 763
> fit=lm(Debt~Inc+Une)
> fit
Call:
lm(formula = Debt ~ Inc + Une)
Coefficients:
(Intercept) Inc Une
198.9956 10.5122 0.6186
> summary(fit)
Call:
lm(formula = Debt ~ Inc + Une)
Residuals:
Min 1Q Median 3Q Max
-110.456 -38.454 -5.836 51.156 102.121
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 198.9956 156.3619 1.273 0.216
Inc 10.5122 1.4765 7.120 2.98e-07 ***
Une 0.6186 6.8679 0.090 0.929
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 64.61 on 23 degrees of freedom
Multiple R-squared: 0.7527, Adjusted R-squared: 0.7312
F-statistic: 35 on 2 and 23 DF, p-value: 1.054e-07
a1) Debt= 198.9956 + 10.5122 *Inc+ 0.6186*Une
a2) The Coefficient of slope of Unemployment is 0.929 which indicates that Unemploymen is not significant at 5% level of significance.
### Using r command
> fit1=lm(Debt~Inc+Une+I(Une^2))
> fit1
Call:
lm(formula = Debt ~ Inc + Une + I(Une^2))
Coefficients:
(Intercept) Inc Une I(Une^2)
-264.623 11.482 73.953 -3.239
> summary(fit1)
Call:
lm(formula = Debt ~ Inc + Une + I(Une^2))
Residuals:
Min 1Q Median 3Q Max
-117.395 -46.847 0.902 51.981 110.648
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -264.623 363.241 -0.729 0.474
Inc 11.482 1.602 7.168 3.47e-07 ***
Une 73.953 52.534 1.408 0.173
I(Une^2) -3.239 2.301 -1.408 0.173
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 63.27 on 22 degrees of freedom
Multiple R-squared: 0.7731, Adjusted R-squared: 0.7422
F-statistic: 24.99 on 3 and 22 DF, p-value: 2.826e-07
c1) Debt = -264.623 + 11.482 *inc+73.953*Une -3.239*Une2
c2) With partial F test we conclude that Unemployment and Unemployment^2 are jointly significant.
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.