Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1) Find the following exact Binomial probabilities using the function Binomdist

ID: 3064427 • Letter: 1

Question

1) Find the following exact Binomial probabilities using the function Binomdist and the approx. Normal probabilities using the function Normdist.

P(x = 20), n = 120, p = .4

P(x > 8), n = 20, p = .15

P(x < 14), n = 40, p = .35

P(x 18), n = 50, p = .8

P(x 6), n = 25, p = .6

2.) Construct a binomial distribution (table) using Excel functions for the following: Eight percent of people in the US eligible to donate blood actually do. You randomly section 12 eligible blood donors and ask them if they donate blood. Create a histogram of this probability distribution. Describe the histogram.

3.) Use Excel functions to find the following probabilities for Z where Z is distributed N(0,1).

P(z < 1.74)

P(z > -.58)

P(-1.4 < z < 2.1)

P(z < -1.6 or z > 1.6)

4.) Use Excel functions to find the Z-score(s) corresponding to the following

            

a) P79

b) Separates top 10%         

5.) Use Excel functions to find the following Normal distribution probablilites

a) P (X > 78) when X ~ N (65, 10)

b) P(20 < X < 40) when X ~ N (42, 12)

6.) Use Excel functions to find the following given the probability when X ~ N(45, 5)

a.) P78                                                b.) Q1

P(x = 20), n = 120, p = .4

P(x > 8), n = 20, p = .15

P(x < 14), n = 40, p = .35

P(x 18), n = 50, p = .8

P(x 6), n = 25, p = .6

Explanation / Answer

Binomial probabilities:

P(x = 20), n = 120, p = .4

=BINOMDIST(20,120,0.4,FALSE) =2.11636E-08 = 0.0000

P(x > 8), n = 20, p = .15

=1-P(X<=8)=1-=BINOMDIST(8,20,0.15,TRUE)=1-0.99867=0.00133

P(x < 14), n = 40, p = .35

=P(x<=13)==BINOMDIST(13,40,0.35,TRUE)=0.044076

P(x 18), n = 50, p = .8

=BINOMDIST(18,50,0.8,TRUE)=1.61414E-11=0.0000

P(x 6), n = 25, p = .6)

=1-P(x<=5) = 1-=BINOMDIST(5,25,0.6,TRUE)=1- 5.35897E-05=0.99946

approx. Normal probabilities:

P(x = 20), n = 120, p = .4

Here mean = np=120*0.4= 48 > 5 and Variance= npq=120.0.4*0.6=28.8>0

So Standard deviation = 5.366

These are both over 5, so we can use the continuity correction factor.

Note:

Continuity Correction Factor Table

If   P(X=n) use   P(n – 0.5 < X < n + 0.5)
If   P(X>n) use   P(X > n + 0.5)
If   P(Xn) use P(X < n + 0.5)
If P (X<n) use   P(X < n – 0.5)
If P(X n) use   P(X > n – 0.5)

P(x = 20)=P(20-0.5<x<20+0.5)

=P(19.5<x<20.5)

=P(x<20.5) - P(x<19.5)

=P(Z<20.5-48/5.366)-P(Z<19.5-48/5.366)

=P(Z<-4.566)-P(Z<-4.752)

=NORMSDIST(-4.566)-=NORMSDIST(-4.752)

=2.48559E-06 - 1.00636E-06

=1.47923E-06

P(x > 8), n = 20, p = .15

Here mean = np=20*0.15= 3 < 5 and Variance= npq=2.55<5 . We can not use Continuty correction as bothe np and npq less than 5.

So Standard deviation = 1.597

P(x > 8),=1-P(x<=7) =1-P(z<7-3/1.597)

=1-NORMSDIST(2.505)

=1-0.99387

=0.00613

P(x < 14), n = 40, p = .35

Here mean = np=40*0.35= 14 > 5 and Variance= npq=9.1>5 .

These are both over 5, so we can use the continuity correction factor.

Standard deviation = sqrt(9.1)=3.017

P(X<14)=p(x<14-0.5)=P(x<13.5)=P(x<=13.4)=P(Z<13.4-14/3.017)=P(Z<-0.1988)=NORMSDIST(-0.1988)=0.4212

P(x 18), n = 50, p = .8

Here mean = np=50*0.8= 40 > 5 and Variance= npq=8>5 .

These are both over 5, so we can use the continuity correction factor.

Standadrd Deviation=SQRT(8)=2.828

P(x 18)=P(x<=18.5) =P(Z<=18.5-40/2.828)=P(Z<=4.355)=0.99999

Post remaining questions saperaelty.

Hope this will be helpful. Thanks and God Bless you:)