1) Find the following exact Binomial probabilities using the function Binomdist
ID: 3064427 • Letter: 1
Question
1) Find the following exact Binomial probabilities using the function Binomdist and the approx. Normal probabilities using the function Normdist.
P(x = 20), n = 120, p = .4
P(x > 8), n = 20, p = .15
P(x < 14), n = 40, p = .35
P(x 18), n = 50, p = .8
P(x 6), n = 25, p = .6
2.) Construct a binomial distribution (table) using Excel functions for the following: Eight percent of people in the US eligible to donate blood actually do. You randomly section 12 eligible blood donors and ask them if they donate blood. Create a histogram of this probability distribution. Describe the histogram.
3.) Use Excel functions to find the following probabilities for Z where Z is distributed N(0,1).
P(z < 1.74)
P(z > -.58)
P(-1.4 < z < 2.1)
P(z < -1.6 or z > 1.6)
4.) Use Excel functions to find the Z-score(s) corresponding to the following
a) P79
b) Separates top 10%
5.) Use Excel functions to find the following Normal distribution probablilites
a) P (X > 78) when X ~ N (65, 10)
b) P(20 < X < 40) when X ~ N (42, 12)
6.) Use Excel functions to find the following given the probability when X ~ N(45, 5)
a.) P78 b.) Q1
P(x = 20), n = 120, p = .4
P(x > 8), n = 20, p = .15
P(x < 14), n = 40, p = .35
P(x 18), n = 50, p = .8
P(x 6), n = 25, p = .6
Explanation / Answer
Binomial probabilities:
P(x = 20), n = 120, p = .4
=BINOMDIST(20,120,0.4,FALSE) =2.11636E-08 = 0.0000
P(x > 8), n = 20, p = .15
=1-P(X<=8)=1-=BINOMDIST(8,20,0.15,TRUE)=1-0.99867=0.00133
P(x < 14), n = 40, p = .35
=P(x<=13)==BINOMDIST(13,40,0.35,TRUE)=0.044076
P(x 18), n = 50, p = .8
=BINOMDIST(18,50,0.8,TRUE)=1.61414E-11=0.0000
P(x 6), n = 25, p = .6)
=1-P(x<=5) = 1-=BINOMDIST(5,25,0.6,TRUE)=1- 5.35897E-05=0.99946
approx. Normal probabilities:
P(x = 20), n = 120, p = .4
Here mean = np=120*0.4= 48 > 5 and Variance= npq=120.0.4*0.6=28.8>0
So Standard deviation = 5.366
These are both over 5, so we can use the continuity correction factor.
Note:
Continuity Correction Factor Table
If P(X=n) use P(n – 0.5 < X < n + 0.5)
If P(X>n) use P(X > n + 0.5)
If P(Xn) use P(X < n + 0.5)
If P (X<n) use P(X < n – 0.5)
If P(X n) use P(X > n – 0.5)
P(x = 20)=P(20-0.5<x<20+0.5)
=P(19.5<x<20.5)
=P(x<20.5) - P(x<19.5)
=P(Z<20.5-48/5.366)-P(Z<19.5-48/5.366)
=P(Z<-4.566)-P(Z<-4.752)
=NORMSDIST(-4.566)-=NORMSDIST(-4.752)
=2.48559E-06 - 1.00636E-06
=1.47923E-06
P(x > 8), n = 20, p = .15
Here mean = np=20*0.15= 3 < 5 and Variance= npq=2.55<5 . We can not use Continuty correction as bothe np and npq less than 5.
So Standard deviation = 1.597
P(x > 8),=1-P(x<=7) =1-P(z<7-3/1.597)
=1-NORMSDIST(2.505)
=1-0.99387
=0.00613
P(x < 14), n = 40, p = .35
Here mean = np=40*0.35= 14 > 5 and Variance= npq=9.1>5 .
These are both over 5, so we can use the continuity correction factor.
Standard deviation = sqrt(9.1)=3.017
P(X<14)=p(x<14-0.5)=P(x<13.5)=P(x<=13.4)=P(Z<13.4-14/3.017)=P(Z<-0.1988)=NORMSDIST(-0.1988)=0.4212
P(x 18), n = 50, p = .8
Here mean = np=50*0.8= 40 > 5 and Variance= npq=8>5 .
These are both over 5, so we can use the continuity correction factor.
Standadrd Deviation=SQRT(8)=2.828
P(x 18)=P(x<=18.5) =P(Z<=18.5-40/2.828)=P(Z<=4.355)=0.99999
Post remaining questions saperaelty.
Hope this will be helpful. Thanks and God Bless you:)
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.