For the following probability distributions: 1. Plot the Probability Function (P
ID: 3065865 • Letter: F
Question
For the following probability distributions:
1. Plot the Probability Function (PMF or PDF) and CDF in different panels,
2. Calculate mean, standard deviation, and variance for each distribution and summarize them in a table (Table 1).
3. Calculate 25th, 50th, and 75th percentiles and summarize them in a table (Table 2).
4. Just for the Binomial distribution: Calculate the CDF for all possible values of X, Approximate CDF for all possible values of X using a Normal distribution and compare them with the exact values that you have calculated (Table 3).
**R STUDIO**
Distributions:
1. Binomial(n=10, p = 0.4)
2. Geometric(p = 0.4)
3. Uniform(0, 10)
4. Normal(0, 1)
5. Normal(0, 5)
6. Normal(5, 10)
7. Weibull(shape = 1, scale = 2)
8. Weibull(shape = 2, scale = 5)
9. Gamma(shape = 2, scale = 5)
10. Lognormal(0, 1)
Explanation / Answer
rm(list=ls())
x<-50
#Binomila Distribution:
xgeom<-rgeom(x,10,0.4)
mean<-mean(xbinom)
Variance<-(49/50)*var(xbinom)
SD<-sqrt((49/50)*var(xbinom))
p25<-qbinom(0.25,10,0.4)
p50<-qbinom(0.50,10,0.4)
p75<-qbinom(0.75,10,0.4)
# Geometric Distribution
xgeom<-rgeom(x,0.4)
mean<-mean(xgeom)
Variance<-(49/50)*var(xgeom)
SD<-sqrt((49/50)*var(xgeom))
p25<-qgeom(0.25,0.4)
p50<-qgeom(0.50,0.4)
p75<-qgeom(0.75,0.4)
# Uniform Distribution
xunif<-runif(x,0,10)
mean<-mean(xunif)
Variance<-(49/50)*var(xunif)
SD<-sqrt((49/50)*var(xunif))
p25<-qunif(0.25,0,10)
p50<-qunif(0.50,0,10)
p75<-qunif(0.75,0,10)
# Normal Distribution(0,1)
xnorm<-rnorm(x,0,1)
mean<-mean(xnorm)
Variance<-(49/50)*var(xnorm)
SD<-sqrt((49/50)*var(xnorm))
p25<-qnorm(0.25,0,1)
p50<-qnorm(0.50,0,1)
p75<-qnorm(0.75,0,1)
# Normal Distribution(0,5)
xnorm<-rnorm(x,0,5)
mean<-mean(xnorm)
Variance<-(49/50)*var(xnorm)
SD<-sqrt((49/50)*var(xnorm))
p25<-qnorm(0.25,0,5)
p50<-qnorm(0.50,0,5)
p75<-qnorm(0.75,0,5)
# Normal Distribution(5,10)
xnorm<-rnorm(x,5,10)
mean<-mean(xnorm)
Variance<-(49/50)*var(xnorm)
SD<-sqrt((49/50)*var(xnorm))
p25<-qnorm(0.25,5,10)
p50<-qnorm(0.50,5,10)
p75<-qnorm(0.75,5,10)
# Weibull Distribution(1,2)
xweibull<-rweibull(x,1,2)
mean<-mean(xweibull)
Variance<-(49/50)*var(xweibull)
SD<-sqrt((49/50)*var(xweibull))
p25<-qweibull(0.25,1,2)
p50<-qweibull(0.50,1,2)
p75<-qweibull(0.75,1,2)
# Weibull Distribution(2,5)
xweibull<-rweibull(x,2,5)
mean<-mean(xweibull)
Variance<-(49/50)*var(xweibull)
SD<-sqrt((49/50)*var(xweibull))
p25<-qweibull(0.25,2,5)
p50<-qweibull(0.50,2,5)
p75<-qweibull(0.75,2,5)
# Gamma Distribution(2,5)
xgamma<-r(x,2,5)
mean<-mean(xgamma)
Variance<-(49/50)*var(xgamma)
SD<-sqrt((49/50)*var(xgamma))
p25<-qgamma(0.25,2,5)
p50<-qgamma(0.50,2,5)
p75<-qgamma(0.75,2,5)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.