Binomial n 25 p 0.36 xi P(X<=xi) 0 0.0000 1 0.0002 2 0.0016 3 0.0074 4 0.0255 5
ID: 3071613 • Letter: B
Question
Binomial
n
25
p
0.36
xi
P(X<=xi)
0
0.0000
1
0.0002
2
0.0016
3
0.0074
4
0.0255
5
0.0682
6
0.1483
7
0.2705
8
0.4252
9
0.5896
10
0.7376
11
0.8510
12
0.9255
13
0.9674
14
0.9876
15
0.9959
16
0.9989
17
0.9997
18
0.9999
19
1.0000
20
1.0000
21
1.0000
22
1.0000
23
1.0000
24
1.0000
25
1.0000
Use the cumulative binomial probability excel output above (dealing with the number of Americans who are satisfied with the way things are going in the U.S.) to answer the following question. (See exercise 42 on page 253 in your textbook for similar problem.)
Find the probability that the number of Americans who are satisfied with the way things are going differs by greater than 1 from the mean.
Binomial
n
25
p
0.36
xi
P(X<=xi)
0
0.0000
1
0.0002
2
0.0016
3
0.0074
4
0.0255
5
0.0682
6
0.1483
7
0.2705
8
0.4252
9
0.5896
10
0.7376
11
0.8510
12
0.9255
13
0.9674
14
0.9876
15
0.9959
16
0.9989
17
0.9997
18
0.9999
19
1.0000
20
1.0000
21
1.0000
22
1.0000
23
1.0000
24
1.0000
25
1.0000
Explanation / Answer
Mean = 25*0.36 = 9
So,
P(Differs greater than 1 from mean)
= 1 - P(Within 1 from mean)
= 1 - P(8 < X < 10)
= 1 - [F(10) - F(7)]
= 1 - (0.7376 - 0.2705)
= 0.5329
Related Questions
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.