Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Determine whether the series: converges ordiverges. If it converges then find it

ID: 3088960 • Letter: D

Question

Determine whether the series: converges ordiverges. If it converges then find its sum.                                                         25^-n+2.16^n+1                                   n=1 Determine whether the series: converges ordiverges. If it converges then find its sum.                                                         25^-n+2.16^n+1                                   n=1   25^-n+2.16^n+1                                   n=1 Determine whether the series: converges ordiverges. If it converges then find its sum.                                                         25^-n+2.16^n+1                                   n=1

Explanation / Answer

I think this is what you are asking. If I mis-read thequestion, please let me know, and we can make changes. n=125(-n+2)16(n+1)=
n=125-n25216n161= 252161n=125-n16n= 10000 n=116n/25n= 10000 n=1(16/25)n = 10000 n=1 .64n= 10000 n=0.64(.64)n . Since .64<1, we know this seriesconverges. 10000(.64) / (1 -.64) = 6400/.36=17777.78, so the sumconverges to 17777.78 10000 n=0.64(.64)n . Since .64<1, we know this seriesconverges. 10000(.64) / (1 -.64) = 6400/.36=17777.78, so the sumconverges to 17777.78
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote