Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

1) Let G = { e,a,b,c,d,f } be a group with identity element e and a Cayley Table

ID: 3101550 • Letter: 1

Question

1) Let G = { e,a,b,c,d,f } be a group with identity element e and a Cayley Table as shown below:

 

 




































































X

e

a

b

c

d

f

e

e

a

b

    c

d

f

a

a

e

f

d

c

b

b

b

d

c

e

f

a

c

c

f

e

b

a

d

d

d

b

a

f

e

c

f

f

c

d

a

b

e

 


 

Use this Cayley Table to answer the following.

 

(a) = {                         }

 

(b) = {                         }

 

2) Find(3) in U (4): (3)   = {                            }

 

3) Find(3) in U (5): (3)   = {                            }

 

4) Find(3) in U (10): (3) = {                            }


X



e



a



b



c



d



f



e



e



a



b



    c



d



f



a



a



e



f



d



c



b



b



b



d



c



e



f



a



c



c



f



e



b



a



d



d



d



b



a



f



e



c



f



f



c



d



a



b



e


Explanation / Answer

1) (a) is the set of the powers of a until you get to the identity,ei: (a)={e,a} Same thing for b (b)={e,b,c} 2) U4={1,3} so (3) in U4 is {1,3} U5={1,2,3,4} SO (3) in U5 is {1,3,4,2} because 3^0=1,3^1=3,3^2=9=4mod5, 3^3=27=2mod5, 3^4=71=1MOD5 so since you are back to the identity you should stop at 3^3. 4) you do the same thing as 3) ,