Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Let A be the following 8 by 8 matrix: A = [sin(pi/64) sin(9 pi/64) sin(17 pi/64)

ID: 3109456 • Letter: L

Question

Let A be the following 8 by 8 matrix: A = [sin(pi/64) sin(9 pi/64) sin(17 pi/64) sin(25 pi/64) sin(33 pi/64) sin(41 pi/64) sin(49 pi/64) sin(57 pi/64) sin(2 pi/64) sin(10 pi/64) sin(18 pi/64) sin(26 pi/64) sin(34 pi/64) sin(42 pi/64) sin(50 pi/64) sin(58 pi/64) sin(3 pi/64) sin(11 pi/64) sin(19 pi/64) sin(27 pi/64) sin(35 pi/64) sin(43 pi/64) sin(51 pi/64) sin(59 pi/64) sin(4 pi/64) sin(12 pi/64) sin(20 pi/64) sin(28 pi/64) sin(36 pi/64) sin(44 pi/64) sin(52 pi/64) sin(60 pi/64) sin(5 pi/64) sin(13 pi/64) sin(21 pi/64) sin(29 pi/64) sin(37 pi/64) sin(45 pi/64) sin(53 pi/64) sin(61 pi/64) sin(6 pi/64) sin(14 pi/64) sin(22 pi/64) sin(30 pi/64) sin(38 pi/64) sin(46 pi/64) sin(54 pi/64) sin(62 pi/64) sin(7 pi/64) sin(15 pi/64) sin(23 pi/64) sin(31 pi/64) sin(39 pi/64) sin(47 pi/64) sin(55 pi/64) sin(63 pi/64) sin(8 pi/64) sin(16 pi/64) sin(24 pi/64) sin(32 pi/64) sin(40 pi/64) sin(48 pi/64) sin(56 pi/64) sin(64 pi/64)] Calculate det(A). Justify your answer.

Explanation / Answer

its determinant is zero.since for a 1*1 matrix its only element sin pi/1=0.similarly if we consider 2*2 matrix its a11=sin pi/4,a12=sin 2pi/4,a21=sin 3pi/4,a22=sin 4pi/4.its determinant is also zero.so for an 8*8 matrix also its determinant is zero.or otherways its two coloums are identical.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote