Find the recurrence relation for the coefficients of the power series solution o
ID: 3110602 • Letter: F
Question
Find the recurrence relation for the coefficients of the power series solution of the differential equation y" + y' - 2y = 0 Assume the form y(x) = Sigma^infinity _n = 0 c_nx^n. First compute y'(x) = Sigma^infinity _n = 1 c_nx^n-1 = Sigma^infinity _n = 0 c_n + 1^x^n Then compute y"(x) = Sigma^infinity _n = 1 c_n + 1 x^n - 1 = Sigma^infinity _n = 0 c_n _ 2x^n Then y" + y' - 2u = Sigma^infinity _n = 0 [c_n + 2 + c_n + 1 + c_n]x^n Requiring that the terms of this series for y" + y' - 2y vanish gives the recurrence relation c_n = 2 = c_n + 1 + c_n for n = 0, 1, 2, ...Explanation / Answer
Given yII+yI-2y=0. ---------> 1
Let y(x)= c0+c1x+c2x2+.....+cnxn+.... be the solution of equation 1
yI(x)=c1+2c2x+..........+(n)cnxn-1+...
yII(x)=2c2+.....+n(n-1)cnxn-2+.....
Substituting these in equation1 and equating the various powers of X, we get
==> [2c2+....+n(n-1)cnxn-2+....] + [c1+2c2x+......+ncnxn-1+..... ] -2[c0+c1x+c2x2+......+cnxn+.....]=0
2c2+c1-2c0=0
==> c2=(-1/2) c1+ c0
substituting these in y(x) we get
y(x)=c0+c1x+(-1/2c1+c0)x2+.....
=c0(1+ x2+.....)+c1(x-(1/2)x2+...)
fill up blanks
(i) n ,n+1
(ii) n(n+1), (n+1)(n+2)
(iii) cn+2=(1/(n+1)(n+2))[-(n+1)cn+1-ncn)
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.