Suppose Z denotes the set of all integers, Zopf^+ denotes the set of all positiv
ID: 3119357 • Letter: S
Question
Suppose Z denotes the set of all integers, Zopf^+ denotes the set of all positive integers, and Zopf^- denotes the set of all negative integers. Similarly R denotes the set of all real numbers, Ropf+ denotes the set of all positive real numbers, and Ropf- denotes the set of all negative real numbers. Suppose Nopf denotes the set of all natural numbers and Qopf denotes the set of all rational numbers. Enter "T" for each true, and "F" for each false statements. F Z Qopf = Z F empty SubsetEqual Zopf^+ T Z Qopf = empty F Z Zopf^- = Zopf^+ T Nopf = Zopf^+ cup {0} T Z Zopf^- = Nopf T {0} cup Zopf^+ = Nopf T Z^+ SubsetEqual Nopf T Qopf cup R = R F Ropf^+ Zopf^+ = Qopf^+ F Nopf SubsetEqual Zopf^+ F Zopf^+ cup Zopf^- = ZopfExplanation / Answer
1. False
2. False because Z+ doesn't contain null set
3. True
4. False because solution contains null set but Z+ doesn't contain null set
5. False because natural set doesn't contain null set
6. False
7. False
8. True
9. True
10. False
11. True
12. False
Related Questions
Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.