Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Air pollution control specialists in southern g California monitor the amount of

ID: 3124461 • Letter: A

Question

Air pollution control specialists in southern g California monitor the amount of ozone, I carbon dioxide, and nitrogen dioxide in the I air on an hourly basis. The hourly time I series data exhibit seasonality, with the levels of pollutants showing patterns that I vary over the hours in the day. On July 15, I 16, and 17, the following levels of nitrogen I dioxide were observed for the 12 hours from I 6:00 A.M. to 6:00 P.M. Use a multiple linear regression model with I dummy variables as follows to develop an I equation to account for seasonal effects in I the data: Hourl 1= 1 if the reading was made between 4:00 P.M. and 5:00 P.M.; 0 otherwise Note that when the values of the 11 dummy-variables are equal to 0, the observation corresponds to the 5:00 P.M. to 6:00 P.M. hour can you please tell me how to make this regression analysis?????????????? how do i set up the information in excel to get the desired results????? have tried the way i know how and it wont let me....

Explanation / Answer

Data setup

You set up data like this.

Score is dependent variable y

t1 to t11 are independent variables.( dummy variables).

day

score

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

15

25

1

0

0

0

0

0

0

0

0

0

0

15

28

0

1

0

0

0

0

0

0

0

0

0

15

35

0

0

1

0

0

0

0

0

0

0

0

15

50

0

0

0

1

0

0

0

0

0

0

0

15

60

0

0

0

0

1

0

0

0

0

0

0

15

60

0

0

0

0

0

1

0

0

0

0

0

15

40

0

0

0

0

0

0

1

0

0

0

0

15

35

0

0

0

0

0

0

0

1

0

0

0

15

30

0

0

0

0

0

0

0

0

1

0

0

15

25

0

0

0

0

0

0

0

0

0

1

0

15

25

0

0

0

0

0

0

0

0

0

0

1

15

20

0

0

0

0

0

0

0

0

0

0

0

16

28

1

0

0

0

0

0

0

0

0

0

0

16

30

0

1

0

0

0

0

0

0

0

0

0

16

35

0

0

1

0

0

0

0

0

0

0

0

16

48

0

0

0

1

0

0

0

0

0

0

0

16

60

0

0

0

0

1

0

0

0

0

0

0

16

65

0

0

0

0

0

1

0

0

0

0

0

16

50

0

0

0

0

0

0

1

0

0

0

0

16

40

0

0

0

0

0

0

0

1

0

0

0

16

35

0

0

0

0

0

0

0

0

1

0

0

16

25

0

0

0

0

0

0

0

0

0

1

0

16

20

0

0

0

0

0

0

0

0

0

0

1

16

20

0

0

0

0

0

0

0

0

0

0

0

17

35

1

0

0

0

0

0

0

0

0

0

0

17

42

0

1

0

0

0

0

0

0

0

0

0

17

45

0

0

1

0

0

0

0

0

0

0

0

17

70

0

0

0

1

0

0

0

0

0

0

0

17

72

0

0

0

0

1

0

0

0

0

0

0

17

75

0

0

0

0

0

1

0

0

0

0

0

17

60

0

0

0

0

0

0

1

0

0

0

0

17

45

0

0

0

0

0

0

0

1

0

0

0

17

40

0

0

0

0

0

0

0

0

1

0

0

17

25

0

0

0

0

0

0

0

0

0

1

0

17

25

0

0

0

0

0

0

0

0

0

0

1

17

25

0

0

0

0

0

0

0

0

0

0

0

Regression Analysis

0.881

Adjusted R²

0.827

n

36

R

0.939

k

11

Std. Error

6.696

Dep. Var.

score

ANOVA table

Source

SS

df

MS

F

p-value

Regression

8,002.2222

11  

727.4747

16.23

1.56E-08

Residual

1,076.0000

24  

44.8333

Total

9,078.2222

35  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=24)

p-value

95% lower

95% upper

Intercept

21.6667

3.8658

5.605

9.07E-06

13.6880

29.6453

t1

7.6667

5.4671

1.402

.1736

-3.6168

18.9502

t2

11.6667

5.4671

2.134

.0433

0.3832

22.9502

t3

16.6667

5.4671

3.049

.0055

5.3832

27.9502

t4

34.3333

5.4671

6.280

1.72E-06

23.0498

45.6168

t5

42.3333

5.4671

7.743

5.59E-08

31.0498

53.6168

t6

45.0000

5.4671

8.231

1.90E-08

33.7165

56.2835

t7

28.3333

5.4671

5.183

2.62E-05

17.0498

39.6168

t8

18.3333

5.4671

3.353

.0026

7.0498

29.6168

t9

13.3333

5.4671

2.439

.0225

2.0498

24.6168

t10

3.3333

5.4671

0.610

.5478

-7.9502

14.6168

t11

1.6667

5.4671

0.305

.7631

-9.6168

12.9502

day

score

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

15

25

1

0

0

0

0

0

0

0

0

0

0

15

28

0

1

0

0

0

0

0

0

0

0

0

15

35

0

0

1

0

0

0

0

0

0

0

0

15

50

0

0

0

1

0

0

0

0

0

0

0

15

60

0

0

0

0

1

0

0

0

0

0

0

15

60

0

0

0

0

0

1

0

0

0

0

0

15

40

0

0

0

0

0

0

1

0

0

0

0

15

35

0

0

0

0

0

0

0

1

0

0

0

15

30

0

0

0

0

0

0

0

0

1

0

0

15

25

0

0

0

0

0

0

0

0

0

1

0

15

25

0

0

0

0

0

0

0

0

0

0

1

15

20

0

0

0

0

0

0

0

0

0

0

0

16

28

1

0

0

0

0

0

0

0

0

0

0

16

30

0

1

0

0

0

0

0

0

0

0

0

16

35

0

0

1

0

0

0

0

0

0

0

0

16

48

0

0

0

1

0

0

0

0

0

0

0

16

60

0

0

0

0

1

0

0

0

0

0

0

16

65

0

0

0

0

0

1

0

0

0

0

0

16

50

0

0

0

0

0

0

1

0

0

0

0

16

40

0

0

0

0

0

0

0

1

0

0

0

16

35

0

0

0

0

0

0

0

0

1

0

0

16

25

0

0

0

0

0

0

0

0

0

1

0

16

20

0

0

0

0

0

0

0

0

0

0

1

16

20

0

0

0

0

0

0

0

0

0

0

0

17

35

1

0

0

0

0

0

0

0

0

0

0

17

42

0

1

0

0

0

0

0

0

0

0

0

17

45

0

0

1

0

0

0

0

0

0

0

0

17

70

0

0

0

1

0

0

0

0

0

0

0

17

72

0

0

0

0

1

0

0

0

0

0

0

17

75

0

0

0

0

0

1

0

0

0

0

0

17

60

0

0

0

0

0

0

1

0

0

0

0

17

45

0

0

0

0

0

0

0

1

0

0

0

17

40

0

0

0

0

0

0

0

0

1

0

0

17

25

0

0

0

0

0

0

0

0

0

1

0

17

25

0

0

0

0

0

0

0

0

0

0

1

17

25

0

0

0

0

0

0

0

0

0

0

0

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote