Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Let t = 1 to refer to the observation in hour 1 on July 15; t = 2 to refer to th

ID: 3124682 • Letter: L

Question

Let t = 1 to refer to the observation in hour 1 on July 15; t = 2 to refer to the observation in hour 2 of July 15; …; and t = 36 to refer to the observation in hour 12 of July 17. Using the dummy variables defined in part (b) and t, develop an equation to account for seasonal effects and any linear trend in the time series. Based upon the seasonal effects in the data and linear trend, compute estimates of the levels of nitrogen dioxide for July 18.

I NEED THE DATA CHART CREATED SO I CAN GET THE REGRESSION ANALYSIS. I NEED HELP SETTING UP THE CHART FOR THIS PROBLEM. HERE IS WHAT I HAVE FOR QUESTION B. (COMPLETED ALREADY.)

Hour1= 1 if the reading was made between 6:00 A.M. and 7:00 A.M.; 0 otherwise

Hour2= 1 if the reading was made between 7:00 A.M. and 8:00 A.M.; 0 otherwise

                                                            .

                                                            .

                                                            .

Hour11= 1 if the reading was made between 4:00 P.M. and 5:00 P.M.; 0 otherwise

Note that when the values of the 11 dummy variables are equal to 0, the observation corresponds to the 5:00 P.M. to 6:00 P.M. hour

Explanation / Answer

Regression Analysis

0.954

Adjusted R²

0.931

n

36

R

0.977

k

12

Std. Error

4.245

Dep. Var.

score

ANOVA table

Source

SS

df

MS

F

p-value

Regression

8,663.7222

12  

721.9769

40.06

1.62E-12

Residual

414.5000

23  

18.0217

Total

9,078.2222

35  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=23)

p-value

95% lower

95% upper

Intercept

11.1667

3.0018

3.720

.0011

4.9569

17.3764

t1

12.4792

3.5560

3.509

.0019

5.1229

19.8354

t2

16.0417

3.5406

4.531

.0001

8.7173

23.3660

t3

20.6042

3.5266

5.843

5.92E-06

13.3088

27.8995

t4

37.8333

3.5140

10.766

1.86E-10

30.5641

45.1026

t5

45.3958

3.5029

12.960

4.69E-12

38.1496

52.6420

t6

47.6250

3.4932

13.634

1.66E-12

40.3988

54.8512

t7

30.5208

3.4849

8.758

8.77E-09

23.3117

37.7300

t8

20.0833

3.4782

5.774

6.99E-06

12.8881

27.2786

t9

14.6458

3.4730

4.217

.0003

7.4615

21.8302

t10

4.2083

3.4692

1.213

.2374

-2.9683

11.3849

t11

2.1042

3.4669

0.607

.5498

-5.0678

9.2761

time

0.4375

0.0722

6.059

3.53E-06

0.2881

0.5869

Predictions

Predicted values for: score

95% Confidence Intervals

95% Prediction Intervals

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

time

Predicted

lower

upper

lower

upper

1

0

0

0

0

0

0

0

0

0

0

37

39.833

33.624

46.043

29.078

50.589

0

1

0

0

0

0

0

0

0

0

0

38

43.833

37.624

50.043

33.078

54.589

0

0

1

0

0

0

0

0

0

0

0

39

48.833

42.624

55.043

38.078

59.589

0

0

0

1

0

0

0

0

0

0

0

40

66.500

60.290

72.710

55.744

77.256

0

0

0

0

1

0

0

0

0

0

0

41

74.500

68.290

80.710

63.744

85.256

0

0

0

0

0

1

0

0

0

0

0

42

77.167

70.957

83.376

66.411

87.922

0

0

0

0

0

0

1

0

0

0

0

43

60.500

54.290

66.710

49.744

71.256

0

0

0

0

0

0

0

1

0

0

0

44

50.500

44.290

56.710

39.744

61.256

0

0

0

0

0

0

0

0

1

0

0

45

45.500

39.290

51.710

34.744

56.256

0

0

0

0

0

0

0

0

0

1

0

46

35.500

29.290

41.710

24.744

46.256

0

0

0

0

0

0

0

0

0

0

1

47

33.833

27.624

40.043

23.078

44.589

0

0

0

0

0

0

0

0

0

0

0

48

32.167

25.957

38.376

21.411

42.922

data chart

Regression Analysis

0.954

Adjusted R²

0.931

n

36

R

0.977

k

12

Std. Error

4.245

Dep. Var.

score

ANOVA table

Source

SS

df

MS

F

p-value

Regression

8,663.7222

12  

721.9769

40.06

1.62E-12

Residual

414.5000

23  

18.0217

Total

9,078.2222

35  

Regression output

confidence interval

variables

coefficients

std. error

   t (df=23)

p-value

95% lower

95% upper

Intercept

11.1667

3.0018

3.720

.0011

4.9569

17.3764

t1

12.4792

3.5560

3.509

.0019

5.1229

19.8354

t2

16.0417

3.5406

4.531

.0001

8.7173

23.3660

t3

20.6042

3.5266

5.843

5.92E-06

13.3088

27.8995

t4

37.8333

3.5140

10.766

1.86E-10

30.5641

45.1026

t5

45.3958

3.5029

12.960

4.69E-12

38.1496

52.6420

t6

47.6250

3.4932

13.634

1.66E-12

40.3988

54.8512

t7

30.5208

3.4849

8.758

8.77E-09

23.3117

37.7300

t8

20.0833

3.4782

5.774

6.99E-06

12.8881

27.2786

t9

14.6458

3.4730

4.217

.0003

7.4615

21.8302

t10

4.2083

3.4692

1.213

.2374

-2.9683

11.3849

t11

2.1042

3.4669

0.607

.5498

-5.0678

9.2761

time

0.4375

0.0722

6.059

3.53E-06

0.2881

0.5869