Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Consider a population having a standard deviation equal to 10.05. We wish to est

ID: 3130385 • Letter: C

Question

Consider a population having a standard deviation equal to 10.05. We wish to estimate the mean of this population.

(a) How large a random sample is needed to construct a 95 percent confidence interval for the mean of this population with a margin of error equal to 1? (Round your answer to the next whole number.)

The random sample is__________ units.

(b) Suppose that we now take a random sample of the size we have determined in part a. If we obtain a sample mean equal to 252, calculate the 95 percent confidence interval for the population mean. What is the interval’s margin of error? (Round your answers to the nearest whole number.)

The 95 percent confidence interval is [_____,_____ ] .

Margin of error:_______

Explanation / Answer

a)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.025  
      
Using a table/technology,      
      
z(alpha/2) =    1.959963985  
      
Also,      
      
s = sample standard deviation =    10.05  
E = margin of error =    1  
      
Thus,      
      
n =    387.9969445  
      
Rounding up,      
      
n =    388   [ANSWER]

******************
b)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    252          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    10.05          
n = sample size =    388          
              
          
Lower bound =    251.0000039          
Upper bound =    252.9999961          
              
Thus, the confidence interval is              
              
(   251 ,   253 ) [ANSWER, CONFIDENCE INTERVAL]

Thus,              
Margin of Error E =    0.999996063 = 1 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote