Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

At the end of the spring semester, the Dean of Students sent a survey to the ent

ID: 3130465 • Letter: A

Question

At the end of the spring semester, the Dean of Students sent a survey to the entire freshman class. One question asked the students how much weight they had gained or lost since the beginning of the school year. The average was a gain of µ = 9 lbs. and = 6. The distribution of scores was approximately normal. A sample of n = 9 students is selected and the average weight change is computed for the sample. Answer the following questions: What is the probability that the sample mean will be less than M = 10 lbs. 2 pts.

Of all possible samples, what proportion shows an average weight gain of less than 5 lbs.? 2 pts.

What is the probability that the sample mean will be a gain between 4 and 12 lbs.? 4 pts.

What is the probability of selecting a student with a weight gain (score) over 15 lbs.? 2 pts.

Explanation / Answer

a)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    10      
u = mean =    9      
n = sample size =    9      
s = standard deviation =    6      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    0.5      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   0.5   ) =    0.691462461 [ANSWER]

******************

b)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    5      
u = mean =    9      
n = sample size =    9      
s = standard deviation =    6      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    -2      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -2   ) =    0.022750132 [ANSWER]

******************

c)

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    4      
x2 = upper bound =    12      
u = mean =    9      
n = sample size =    9      
s = standard deviation =    6      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u) * sqrt(n) / s =    -2.5      
z2 = upper z score = (x2 - u) * sqrt(n) / s =    1.5      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.006209665      
P(z < z2) =    0.933192799      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.926983133   [ANSWER]

********************

d)

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    15      
u = mean =    9      
          
s = standard deviation =    6      
          
Thus,          
          
z = (x - u) / s =    1      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   1   ) =    0.158655254 [ANSWER]
  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Chat Now And Get Quote