Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

According to the IRS, 2012 tax returns showed an average refund of $2439 with a

ID: 3130549 • Letter: A

Question

According to the IRS, 2012 tax returns showed an average refund of $2439 with a standard deviation of $2198. Assume that 2012 tax return amounts are normally distributed. Find the probability a randomly selected 2012 tax return showed an amount greater than $3212 Find the probability a randomly selected 2012 tax return showed an amount less than or equal to $4388 or greater than $5015 Find the probability a randomly selected 2012 tax return showed an amount less than $470 Find the probability a randomly selected 2012 tax return showed an amount no less than $2248 and at most $5408 The probability is 0.79 that a randomly selected 2012 tax return showed at least what amount? (Remember the label. The probability is 0.4 that a randomly selected 2012 tax return showed between what two amounts equidistant from the mean? Find the lower endpoint using Excel. Use this lower endpoint and some math to find the upper endpoint. (Remember the label.) The probability is 0.19 that a randomly selected 2012 tax return showed no more than what amount? (Remember the label.)

Explanation / Answer

1.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    3212      
u = mean =    2439      
          
s = standard deviation =    2198      
          
Thus,          
          
z = (x - u) / s =    0.351683348      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   0.351683348   ) =    0.362537875 [ANSWER]

********************

2.

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    4388      
x2 = upper bound =    5015      
u = mean =    2439      
          
s = standard deviation =    2198      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    0.886715196      
z2 = upper z score = (x2 - u) / s =    1.171974522      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.812383872      
P(z < z2) =    0.879396357      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.067012485      

Thus, those outside this interval is the complement =    0.932987515   [ANSWER]

*************************

3.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    470      
u = mean =    2439      
          
s = standard deviation =    2198      
          
Thus,          
          
z = (x - u) / s =    -0.895814377      
          
Thus, using a table/technology, the left tailed area of this is          
          
P(z <   -0.895814377   ) =    0.185175955 [ANSWER]

*************************

4.

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    2248      
x2 = upper bound =    5408      
u = mean =    2439      
          
s = standard deviation =    2198      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -0.086897179      
z2 = upper z score = (x2 - u) / s =    1.35077343      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.465376621      
P(z < z2) =    0.911615989      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.446239368   [ANSWER]

  

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

P.S. I have a feeling that there is a typo in the given, because the mean and standard deviation are almost the same. Normally, the mean is much greater than the standard deviation. If there is a typo, please include that in your next submission. Thanks!

  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote