Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The values listed below are waiting times (in minutes) of customers at two diffe

ID: 3131457 • Letter: T

Question

The values listed below are waiting times (in minutes) of customers at two different banks. At Bank A, customers enter a single waiting line that feeds three teller windows. At Bank B, customers may enter any one of three different lines that have formed at three teller windows. Answer the following questions.

Bank A

6.36.3

6.66.6

6.76.7

6.86.8

7.17.1

7.37.3

7.67.6

7.97.9

7.97.9

7.97.9

Bank Upper BBank B

4.24.2

5.55.5

5.85.8

6.36.3

6.66.6

7.77.7

7.77.7

8.58.5

9.29.2

10.010.0

Construct a 90% confidence interval for the population standard deviation at Bank A.

__ min< bank A< __min

__< bank B< __

Bank A

6.36.3

6.66.6

6.76.7

6.86.8

7.17.1

7.37.3

7.67.6

7.97.9

7.97.9

7.97.9

Bank Upper BBank B

4.24.2

5.55.5

5.85.8

6.36.3

6.66.6

7.77.7

7.77.7

8.58.5

9.29.2

10.010.0

Explanation / Answer

a)

Using the sample standard deviation for bank A,

s = 0.598980616

As              
              
df = n - 1 =    9          
alpha = (1 - confidence level)/2 =    0.05          
              
Then the critical values for chi^2 are              
              
chi^2(alpha/2) =    16.9189776          
chi^2(alpha/2) =    3.325112843          
              
Thus, as              
              
lower bound = (n - 1) s^2 / chi^2(alpha/2) =    0.190850776          
upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    0.971094864          
              
Thus, the confidence interval for the variance is              
              
(   0.190850776   ,   0.971094864   )
              
Also, for the standard deviation, getting the square root of the bounds,              
              
(   0.436864711   ,   0.985441457   ) [ANSWER]

*********************

b)

Using the sample standard deviation for bank B,

s = 1.7958285

As              
              
df = n - 1 =    9          
alpha = (1 - confidence level)/2 =    0.05          
              
Then the critical values for chi^2 are              
              
chi^2(alpha/2) =    16.9189776          
chi^2(alpha/2) =    3.325112843          
              
Thus, as              
              
lower bound = (n - 1) s^2 / chi^2(alpha/2) =    1.715529194          
upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    8.729027068          
              
Thus, the confidence interval for the variance is              
              
(   1.715529194   ,   8.729027068   )
              
Also, for the standard deviation, getting the square root of the bounds,              
              
(   1.309782117   ,   2.954492692   ) [ANSWER]