Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Graduate students applying for entrance to many universities must take a Miller

ID: 3131705 • Letter: G

Question

Graduate students applying for entrance to many universities must take a Miller Analogies Test. It is known that the test scores have a mean of 75 and a variance of 16. In 1990, 100 students applied for entrance into graduate school in physics.

(a)[3] Find the mean and standard deviation of the sampling distribution of X .

(b)[2] Find the probability that the average score of this group of students is higher than 76.

(c)[3] Find the probability that the sample mean deviates from the population mean by less than 2.

(d)[4] Construct a 98% confidence interval for , the true mean test score.

Explanation / Answer

a)

By central limit theorem, the mean is still the population mean,

u(X) = 75 [ANSWER]

but the standard deviation is reduced by sqrt(n),

sigma(X) = sigma/sqrt(n) = sqrt(16)/sqrt(100) = 0.4 [ANSWER]

********************

b)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    76      
u = mean =    75      
n = sample size =    100      
s = standard deviation =    4      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    2.5      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2.5   ) =    0.006209665 [ANSWER]

********************

c)

That means the sample mean is between 73 and 77.

We first get the z score for the two values. As z = (x - u) sqrt(n) / s, then as          
x1 = lower bound =    73      
x2 = upper bound =    77      
u = mean =    75      
n = sample size =    100      
s = standard deviation =    4      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u) * sqrt(n) / s =    -5      
z2 = upper z score = (x2 - u) * sqrt(n) / s =    5      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    2.86652E-07      
P(z < z2) =    0.999999713      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.999999427   [ANSWER]

********************

d)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.01          
X = sample mean =    75          
z(alpha/2) = critical z for the confidence interval =    2.326347874          
s = sample standard deviation =    4          
n = sample size =    100          
              
Thus,              
Margin of Error E =    0.93053915          
Lower bound =    74.06946085          
Upper bound =    75.93053915          
              
Thus, the confidence interval is              
              
(   74.06946085   ,   75.93053915   ) [ANSWER]