Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

For each of the following, give the name of the distribution, the values of any

ID: 3131895 • Letter: F

Question

For each of the following, give the name of the distribution, the values of any parameters, a formula for the exact probability, and only if appropriate (a binomial distribution with large n and p close to 0 or 1), use the Poisson distribution to estimate the probability. There are 600 frogs in a swamp. On average, each frog leaps out of the swamp to catch a fly 16 times per 8-hour night. If I watch the swamp for one minute during the night, what's the probability that I see at least 16 frogs leaping for flies?

Explanation / Answer

18.

Hence, a frog leaps every 8/16 = 0.5 hours or 30 minutes on the average.

Hence, on the average, we see 600 frogs every 30 minutes, or, 600/30 = 20 frogs per minute.

Hence, this is

i) a Poisson distirbution

ii) with mean u = 20 frogs per minute

iii)

Note that the probability of x successes is          

P(x) = u^x e^(-u) / x!          
          
where          
          
u = the mean number of successes =    20      
          
x = the number of successes

Hence,

P(x) = 20^x e^(-20) / x!          
      
Hence,

P(at least 16) = 1 - Sum[P(x)]|(x=0 to 15) [ANSWER]

where P(x) is as above.

***********************************

Note that P(at least x) = 1 - P(at most x - 1).          
          
Using a cumulative poisson distribution table or technology, matching          
          
u = the mean number of successes =    20      
          
x = our critical value of successes =    16      
          
Then the cumulative probability of P(at most x - 1) from a table/technology is          
          
P(at most   15   ) =    0.156513135
          
Thus, the probability of at least   16   successes is  
          
P(at least   16   ) =    0.843486865 [ANSWER, PROBABILITY OF AT LEAST 16 FROGS]