Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

velue 5.00 points The game called Lotto sponsored by the Louisiana Lottery Commi

ID: 3133088 • Letter: V

Question

velue 5.00 points The game called Lotto sponsored by the Louisiana Lottery Commission pays its largest prize when a single number between 1 and 35. Any number appears only once, and the winning balls are selected contestant matches all 6 of the 35 possible numbers. Assume there are 35 ping-pong without replacement a. The commission reports t balls each with a hecmiin sio the probhahily mating al ubarn are 1 in 1.623,160. s this in terms of probability? (Round your answer to 8 decimal places.) Probability b. Use the hypergeometric formula to find the probability of matching all 6 winning numbers. The lottery commission also pays if a contestant matches 4 or 5 of the 6 winning numbers. Hint: Divide the 35 numbers into two g decimal places.) groups, winning numbers and nonwinning numbers. (Round your answer to 8 Probability c. Find the probability, again using the hypergeometric formula, for matching 4 of the 6 winning (Round your answer to 8 decimal places.) Probability d. Find the probability of matching 5 of the 6 winning numbers (Round your answer to 8 decimal places.) Probability Reterences eBook & Resources Worksheet

Explanation / Answer

a)

P = 1/1623160 = 0.000000616082 = 0.00000062 [ANSWER]

*******************

b)


Note that the probability of x successes out of n trials is          
          
P(x) = C(N-K, n-x) C(K, x) / C(N, n)          
          
where          
N = population size =    35      
K = number of successes in the population =    6      
n = sample size =    6      
x = number of successes in the sample =    6      
          
Thus,          
          
P(   6   ) =    0.000000616082 [ANSWER]

***********************

c)

Note that the probability of x successes out of n trials is          
          
P(x) = C(N-K, n-x) C(K, x) / C(N, n)          
          
where          
N = population size =    35      
K = number of successes in the population =    6      
n = sample size =    6      
x = number of successes in the sample =    4      
          
Thus,          
          
P(   4   ) =    0.003751941 [ANSWER]

****************************

d)

Note that the probability of x successes out of n trials is          
          
P(x) = C(N-K, n-x) C(K, x) / C(N, n)          
          
where          
N = population size =    35      
K = number of successes in the population =    6      
n = sample size =    6      
x = number of successes in the sample =    5      
          
Thus,          
          
P(   5   ) =    0.000107198 [ANSWER]