Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Families USA, a monthly magazine that discusses issues related to health and hea

ID: 3134779 • Letter: F

Question

Families USA, a monthly magazine that discusses issues related to health and health costs, surveyed 21 of its subscribers. It found that the annual health insurance premiums for a family with coverage through an employer averaged $10,900. The standard deviation of the sample was $1,020.

(a) Based on this sample information, develop a 98% confidence interval for the population mean yearly premium. (Round up your answers to the next whole number.) Confidence interval for the population mean yearly premium is between $ and $ .

(b) How large a sample is needed to find the population mean within $230 at 90% confidence? (Round up your answer to the next whole number.) Sample size:

Explanation / Answer

a)

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.01          
X = sample mean =    10900          
t(alpha/2) = critical t for the confidence interval =    2.527977003          
s = sample standard deviation =    1020          
n = sample size =    21          
df = n - 1 =    20          
Thus,              
Margin of Error E =    562.6828043          
Lower bound =    10337.3172          
Upper bound =    11462.6828          
              
Thus, the confidence interval is              
              
(   10337.3172   ,   11462.6828   ) [ANSWER]

********************

b)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.05  
      
Using a table/technology,      
      
z(alpha/2) =    1.644853627  
      
Also,      
      
s = sample standard deviation =    1020  
E = margin of error =    230  
      
Thus,      
      
n =    53.21072608  
      
Rounding up,      
      
n =    54   [ANSWER]