Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Suppose that a category of world class runners are known to run a marathon (26 m

ID: 3134943 • Letter: S

Question

Suppose that a category of world class runners are known to run a marathon (26 miles) in an average of 148 minutes with a standard deviation of 12 minutes. Consider 49 of the races. Let X = the average times of the 49 races. (a) Find the median of the average running times. ( That is, find the median of the sampling distribution of the average running times.) min (b) Find the slowest 10 percent of the average running times. ( Round the answer to the second decimal place.) min (c) Find the fastest 10 percent of the average running times. ( Round the answer to the second decimal place.) min

Explanation / Answer

a)

By central limit theorem, average running times are approximately normally distributed, so the mean is also the median.

Hence,

Median = 148 minutes [ANSWER]

**********************

b)

Slowest 10% means the 90th percentile of time [more time is slower].

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.9      
          
Then, using table or technology,          
          
z =    1.281551566      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    148      
z = the critical z score =    1.281551566      
s = standard deviation =    12      
n = sample size =    49      
Then          
          
x = critical value =    150.1969455   [ANSWER]

**************************

c)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.1      
          
Then, using table or technology,          
          
z =    -1.281551566      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    148      
z = the critical z score =    -1.281551566      
s = standard deviation =    12      
n = sample size =    49      
Then          
          
x = critical value =    145.8030545   [ANSWER]  
  
  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote