Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Suppose that we would like to determine if the average traffic flow at an inters

ID: 3135035 • Letter: S

Question

Suppose that we would like to determine if the average traffic flow at an intersection in the city is greater than 50 cars per minute. A set of 49 one-minute observation intervals over a one-week period was randomly selected and the average traffic flow was observed to be 47.60 cars/minute. Assume that the standard deviation is known to be 7 cars/minute.

(a) Using a 0.02 level of significance, would you reject the hypothesis that the average traffic flow is greater than 50 cars/minute? What is the Type I error?

(b) If the true average traffic flow is 48 cars/minute, with the test in (a), what is the Type II error? (The probability that we will not reject the hypothesis that the average traffic flow is greater than 50 cars/minute).

Explanation / Answer

a)

Formulating the null and alternative hypotheses,              
              
Ho:   u   >=   50  
Ha:    u   <   50  
              
As we can see, this is a    left   tailed test.      
              
Thus, getting the critical z, as alpha =    0.02   ,      
alpha =    0.02          
zcrit =    -   2.053748911      
              
Getting the test statistic, as              
              
X = sample mean =    47.6          
uo = hypothesized mean =    50          
n = sample size =    49          
s = standard deviation =    7          
              
Thus, z = (X - uo) * sqrt(n) / s =    -2.4          
              
Also, the p value is              
              
p =    0.008197536          
              
As |z| > 2.053, and P < 0.02, we   REJECT THE NULL HYPOTHESIS.      

There is significant evidence that the true average traffic flow is less than 50 cars per minute. [CONCLUSION]

A type I error here is incorrectly concluding that the true average traffic flow is less than 50 cars per minute, when in fact, it is not. [ANSWER]

************************************

b)

Note that              

Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.02          
X = sample mean =    50          
z(alpha/2) = critical z for the confidence interval =    2.053748911          
s = sample standard deviation =    7          
n = sample size =    49          
              
Thus,              

Lower bound =    47.94625109          

We THEN get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    47.94625109      
u = mean =    48      
n = sample size =    49      
s = standard deviation =    7      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    -0.05374891      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   -0.05374891   ) =    0.521432393 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote