Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A survey of 200 students is selected randomly on a large university campus. They

ID: 3135053 • Letter: A

Question

A survey of 200 students is selected randomly on a large university campus. They are asked if they use a laptop in class to take notes. Suppose that based on the survey, 70 of the 200 students responded "yes".

8a) What is the value of the sample proportion, p ?

8b) What is the standard error of the sample proportion?

8c) Construct an approximate 95% confidence interval for the true proportion (pi) by taking +/- 2 SEs (standard errors) from the sample proportion.

8d) What would be the minimum sample size for this data with a desire sampling error of 2% (that is, e = +/- 0.02) at a 95% confidence?

Explanation / Answer

a)

Here,

p^ = x/n = 70/200 = 0.35 [ANSWER]

******************************

b)

Here,          
n =    200      
p =    0.35      

Hence,
          
s = standard deviation = sqrt(p(1-p)/n) =    0.033726844   [ANSWER]

*******************************

c)

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.35          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.033726844          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    2          
Thus,              
Margin of error = z(alpha/2)*sp =    0.067453688          
lower bound = p^ - z(alpha/2) * sp =   0.282546312          
upper bound = p^ + z(alpha/2) * sp =    0.417453688          
              
Thus, the confidence interval is              
              
(   0.282546312   ,   0.417453688   ) [ANSWER]

****************************

d)

Note that      
      
n = z(alpha/2)^2 p (1 - p) / E^2      
      
where      
      
alpha/2 =    0.025  
       
      
Using a table/technology,      
      
z(alpha/2) =    1.959963985  
      
Also,      
      
E =    0.02  
p =    0.35  
      
Thus,      
      
n =    2184.829704  
      
Rounding up,      
      
n =    2185   [ANSWER]

  

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote