Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The following data refers to airborne bacteria count (number of colonies/ft^3) b

ID: 3135081 • Letter: T

Question

The following data refers to airborne bacteria count (number of colonies/ft^3) both for m = 8 carpeted hospital rooms and for n = 8 uncarpeted rooms. Make any necessary assumptions and answer the questions below. Is the evidence sufficient to support the variance for carpeted rooms being greater than 7 colonies/ft^3 at level 0.05? Give a 90% confidence interval for the standard deviation of carpeted rooms Is the evidence sufficient to support the variance for uncarpeted rooms being greater than 9 colonies/ft^3 at level 0.05? What is the P-value for the test in part "c."? Is the evidence sufficient to support the variance for uncarpeted rooms is greater than the variance for carpeted rooms at level 0.05? What is the P-value for the test in part "a."? Give a 90% confidence interval for the variance of bacteria count in carpeted rooms over the variance of bacteria count in ucarpeted rooms.

Explanation / Answer

a)

The sample standard deviation is

s = 2.6774188

Formulating the null and alternative hypotheses,              
              
Ho:   sigma   <=   2.645751311  
Ha:    sigma   >   2.645751311  
              
As we can see, this is a    right   tailed test.      
              
Thus, getting the critical chi^2, as alpha =    0.05   ,      
alpha =    0.05          
df = N - 1 =    7          
chi^2 (crit) =    14.06714045        
              
Getting the test statistic, as              
s = sample standard deviation =    2.6774188          
sigmao = hypothesized standard deviation =    2.645751311          
n = sample size =    8          
              
              
Thus, chi^2 = (N - 1)(s/sigmao)^2 =    7.168571431          
Hence, as chi^2 < 14.067, we fail to reject Ho.

There is no significant evidence that the variance for carpeted rooms is greater than 7 colonies/ft^3.

**************************

b)

As              
              
df = n - 1 =    7          
alpha = (1 - confidence level)/2 =    0.05          
              
Then the critical values for chi^2 are              
              
chi^2(alpha/2) =    14.06714045          
chi^2(alpha/2) =    2.167349909          
              
Thus, as              
              
lower bound = (n - 1) s^2 / chi^2(alpha/2) =    3.567178432          
upper bound = (n - 1) s^2 / chi^2(1 - alpha/2) =    23.15269897          
              
Thus, the confidence interval for the variance is              
              
(   3.567178432   ,   23.15269897   )
              
Also, for the standard deviation, getting the square root of the bounds,              
              
(   1.888697549   ,   4.811725155   ) [ANSWER]

****************************

c)

The sample standard deviation is

s = 3.210001113

Formulating the null and alternative hypotheses,              
              
Ho:   sigma   <=   3  
Ha:    sigma   >   3  
              
As we can see, this is a    right   tailed test.      
              
Thus, getting the critical chi^2, as alpha =    0.05   ,      
alpha =    0.05          
df = N - 1 =    7          
chi^2 (crit) =    14.06714045        
              
Getting the test statistic, as              
s = sample standard deviation =    3.210001113          
sigmao = hypothesized standard deviation =    3          
n = sample size =    8          
              
              
Thus, chi^2 = (N - 1)(s/sigmao)^2 =    8.014305558          
Hence, as chi^2 < 14.067, we fail to reject Ho.

There is no significant evidence that the variance for carpeted rooms is greater than 7 colonies/ft^3.

******************************

d)

Using technology for the right tailed area of chi^2 = 8.014305558 at df = 7,

P = 0.331334143 [ANSWER]

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote