Give the asymptotic complexity of each of the following functions in simplest te
ID: 3141299 • Letter: G
Question
Give the asymptotic complexity of each of the following functions in simplest terms. Your solution should have the form Theta(n^alpha) or Theta((log_mu (n))^beta) or Theta(n^alpha(log_mu(n))^beta) or Theta(gamma^delta n) or Theta((log_mu (n))^beta) or Theta(n^alpha (log_mu (n)^beta)) or Theta (gamma^delta n) or Theta (1) where alpha, beta, gamma, delta, mu are constants. (m) f_m(n) = 3 times 3^n + 4 + 4 times 6^n + 2; (n) f_n(n) = (n - 1) log_10 (6n^3 - 4n^2 - 2n - 1) + 3n + 8; (o) f_o(n) = Squareroot 10 log_9 (n) + 9n + 21; (p) f_p(n) = 3^n + 9^n + 12^n; (q) f_q(n) = (8n^2 + n^2 + 6) times (n^3 + 8n + 3) times (n^2 - 2); (r) f_r(n) = 3 times 7^n + 3 + 14 times 7^n + 6; (s) f_s(n) = 4^8n + 5 times 8^n; (t) f_t(n) = 2 log_9 (6^n + n^6 + 6); (u) f_u(n) = 8n^7 + 3^n + 2 + 6^n + 7; (v) f_v(n) = 5 times 5^log_5 (5n^5 + 5n^3);Explanation / Answer
(According to Chegg policy, only four subquestions will be answered. Please post the remaining in another question)
(s) fs(n) = 48n + 5*8n
=> fs(n) = (48)n + 5*8n
We have 8 < 48
For n > 1
=> 8n < (48)n
=> 5*8n < 5(48)n
=> (48)n + 5*8n < (48)n + 5(48)n
=> (48)n + 5*8n < 6 (48)n
=> (48)n < (48)n + 5*8n < 6 (48)n
=> (48)n < fs(n) < 6 (48)n
=> fs(n) = (48n)
(p) fp(n) = 3n + 9n + 12n
For n > 1,
3n + 9n + 12n > 12n
and 3n + 9n + 12n < 12n + 12n + 12n
=> 12n < 3n + 9n + 12n < 3*12n
=> 12n < fp(n) < 3*12n
=> fp(n) = (12n)
(v) fv(n) = 5*5log5(5n^5+5n^3)
=> fv(n) = 5log5(5n^5+5n^3)+1
=> fv(n) = 5log5(5n^5+5n^3)+log5 5
=> fv(n) = 5log5(5n^5+5n^3)*5
=> fv(n) = 5log5(25n^5+25n^3)
=> fv(n) = 25n5+25n3
=> fv(n) = 25(n5 + n3)
We have for n>1, 25n5< 25(n5 + n3) < 25(n5 + n5)
=>25n5 < 25(n5 + n3) < 50n5
=> 25n5 < fv(n) < 50n5
=> fv(n) = (n5)
(m) fm(n) = 3*3n+4 + 4*6n+2
=> fm(n) = 3*3n*34 + 4*6n*62
=> fm(n) = 243*3n + 144*6n
For n >1, we have
144*6n < 243*3n + 144*6n < 243*6n + 144*6n
=> 144*6n < 243*3n + 144*6n < 387*6n
=> 144*6n < fm(n) < 387*6n
=> fm(n) = (6n)
Related Questions
drjack9650@gmail.com
Navigate
Integrity-first tutoring: explanations and feedback only — we do not complete graded work. Learn more.