Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

X~N(60,14). Suppose that you form random samples of 25 from this distribution. L

ID: 3149877 • Letter: X

Question

X~N(60,14). Suppose that you form random samples of 25 from this distribution. Let X be the random variable of averages Let (EX) or (sum)X be the random variable of sums.

A.) Find the 20th percentile. (round 4 decimal places)

B.) Give the distribution of SumX. Fill in blank N(1500,______)

C.) Find the minimum Value for the upper quartile for sum X. Round your answer to two decimal places.

D.) Find the probability of P(1400S SumX 1550)= _____________.

Please show all work and if there is a Z score could you explain how to put it into a TI83 calculator? I am struggling here!

Thank you in advance!

Explanation / Answer

a)

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.2      
          
Then, using table or technology,          
          
z =    -0.841621234      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    60      
z = the critical z score =    -0.841621234      
s = standard deviation =    14      
n = sample size =    25      
Then          
          
x = critical value =    57.64346055   [ANSWER]

***************************

b)

Note that for samples of size n,

SumX~(n*u, sigma*sqrt(n))

Hence,

SumX~(25*60, 14*sqrt(25))

Thus,

SumX~(1500, 70) [ANSWER]

***************************

c)

The upper quartile is the 75th percentile.

First, we get the z score from the given left tailed area. As          
          
Left tailed area =    0.75      
          
Then, using table or technology,          
          
z =    0.67448975      
          
As x = u + z * s / sqrt(n)          
          
where          
          
u = mean =    60      
z = the critical z score =    0.67448975      
s = standard deviation =    14      
n = sample size =    25      
Then          
          
x = critical value =    61.8885713   [ANSWER]

****************************

d)

We first get the z score for the two values. As z = (x - u) / s, then as          
x1 = lower bound =    1400      
x2 = upper bound =    1550      
u = mean =    1500      
          
s = standard deviation =    70      
          
Thus, the two z scores are          
          
z1 = lower z score = (x1 - u)/s =    -1.428571429      
z2 = upper z score = (x2 - u) / s =    0.714285714      
          
Using table/technology, the left tailed areas between these z scores is          
          
P(z < z1) =    0.076563726      
P(z < z2) =    0.762474738      
          
Thus, the area between them, by subtracting these areas, is          
          
P(z1 < z < z2) =    0.685911012   [ANSWER]  
  
***************************

You can get the left tailed area of a z score using normcdf(-999999, z, 0, 1).

You can get the z score from a left tailed area using InvNorm(left tailed area, 0, 1).