Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

you believe that type of vegetation that cicadas eat affects their hind tibia le

ID: 3150111 • Letter: Y

Question

you believe that type of vegetation that cicadas eat affects their hind tibia length. Namely, you believe that mature oak leaves will produce longer hind tibia lenghts compared to mulberry leaves as a food source. Therefore you randomly collect 20 young male cicades and randomly put them into two feeding of groups of 10 per group. One group of 10 is fed oak leaves while the other group of 10 is fed mulberry leaves. At maturity all hind tibia lenghts are measured with the following results

Food source

Average hind tibia length

n

S(standard deviation)

Oak leaves

79.1

10

3.13

Mulberry leaves

75.3

10

1.29

a)calculate the following confidence intervals for the mean hind tibia length for the cicades that ate oak leaves

i)90% ii)95 iii)99%

b) calculate the 95% confidece interval for the difference in average hind tibia length for the two typed of cicades(i.e those eating oak leaves and those eating mulberry leaves?

c) interpret your confidence interval in problem B above

d)construct the 95% confidence interval for the variance in hind tibia length for the cicadas eating oak leaves

e) construct the 90% confidence interval for the standard deviation for in hind tibia length for the cicades eating mulberry leaves.

Food source

Average hind tibia length

n

S(standard deviation)

Oak leaves

79.1

10

3.13

Mulberry leaves

75.3

10

1.29

Explanation / Answer

A)

i)

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.05          
X = sample mean =    79.1          
t(alpha/2) = critical t for the confidence interval =    1.833112933          
s = sample standard deviation =    3.13          
n = sample size =    10          
df = n - 1 =    9          
Thus,              
Margin of Error E =    1.81440218          
Lower bound =    77.28559782          
Upper bound =    80.91440218          
              
Thus, the confidence interval is              
              
(   77.28559782   ,   80.91440218   ) [ANSWER]

***************************

ii)

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    79.1          
t(alpha/2) = critical t for the confidence interval =    2.262157163          
s = sample standard deviation =    3.13          
n = sample size =    10          
df = n - 1 =    9          
Thus,              
Margin of Error E =    2.239067116          
Lower bound =    76.86093288          
Upper bound =    81.33906712          
              
Thus, the confidence interval is              
              
(   76.86093288   ,   81.33906712   ) [ANSWER]

***********************

iii)

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.005          
X = sample mean =    79.1          
t(alpha/2) = critical t for the confidence interval =    3.249835542          
s = sample standard deviation =    3.13          
n = sample size =    10          
df = n - 1 =    9          
Thus,              
Margin of Error E =    3.21666417          
Lower bound =    75.88333583          
Upper bound =    82.31666417          
              
Thus, the confidence interval is              
              
(   75.88333583   ,   82.31666417   ) [ANSWER]

***********************

b)

Hi! If you use another method/formula in calculating the degrees of freedom in this t-test, please resubmit this question together with the formula/method you use in determining the degrees of freedom. That way we can continue helping you! Thanks!

Calculating the means of each group,              
              
X1 =    79.1          
X2 =    75.3          
              
Calculating the standard deviations of each group,              
              
s1 =    3.13          
s2 =    1.29          
              
Thus, the standard error of their difference is, by using sD = sqrt(s1^2/n1 + s2^2/n2):              
              
n1 = sample size of group 1 =    10          
n2 = sample size of group 2 =    10          
Thus, df = n1 + n2 - 2 =    18          
Also, sD =    1.070560601          
              
      
              
For the   0.95   confidence level, then      
              
alpha/2 = (1 - confidence level)/2 =    0.025          
t(alpha/2) =    2.10092204          
              
lower bound = [X1 - X2] - t(alpha/2) * sD =    1.550835638          
upper bound = [X1 - X2] + t(alpha/2) * sD =    6.049164362          
              
Thus, the confidence interval is              
              
(   1.550835638   ,   6.049164362   ) [ANSWER]

************************

c)

As 0 is not inside the interval, there is significant evidence that the true mean hind tibia length is larger for those eating oak leaves at 0.025 level.

*******************************************

Hi! Please submit the next part as a separate question. That way we can continue helping you! Please indicate which parts are not yet solved when you submit. Thanks!