Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Calculate a 95 percent confidence interval for µ d = µ 1 – µ 2 . Can we be 95 pe

ID: 3150667 • Letter: C

Question

Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.)

Test the null hypothesis H0: µd = 0 versus the alternative hypothesis Ha: µd 0 by setting equal to .10, .05, .01, and .001. How much evidence is there that µd differs from 0? What does this say about how µ1 and µ2 compare? (Round your answer to 3 decimal places.)

The p-value for testing H0: µd < 3 versus Ha: µd > 3 equals .1316. Use the p-value to test these hypotheses with equal to .10, .05, .01, and .001. How much evidence is there that µd exceeds 3? What does this say about the size of the difference between µ1 and µ2? (Round your answer to 3 decimal places.)

(a)

Calculate a 95 percent confidence interval for µd = µ1 – µ2. Can we be 95 percent confident that the difference between µ1 and µ2 is greater than 0? (Round your answers to 2 decimal places.)

Explanation / Answer

a)

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    4.1          
t(alpha/2) = critical t for the confidence interval =    2.010634758          
s = sample standard deviation =    6.8          
n = sample size =    49          
df = n - 1 =    48          
Thus,              
Margin of Error E =    1.95318805          
Lower bound =    2.14681195          
Upper bound =    6.05318805          
              
Thus, the confidence interval is              
              
(   2.14681195   ,   6.05318805   )[ANSWER]

YES, as this whole interval is greater than 0. [ANSWER]

****************************

b)

Formulating the null and alternative hypotheses,              
              
Ho:   u   =   0  
Ha:    u   =/   0  
              
As we can see, this is a    two   tailed test.      
              
df = n - 1 =    48          
              
Getting the test statistic, as              
              
X = sample mean =    4.1          
uo = hypothesized mean =    0          
n = sample size =    49          
s = standard deviation =    6.8          
              
Thus, t = (X - uo) * sqrt(n) / s =    4.220588235          
              
Also, the p value is, as this is two tailed,              
              
p =    0.000107681          


As this P is less than all 0.10, 0.05, 0.01, and 0.001, WE REJECT HO AT ALPHA EQUALS ALL TEST VALUES. [ANSWER]

EXTREMELY STRONG evidence that u1 differs from u2. [ANSWER]

*********************************

c)

Formulating the null and alternative hypotheses,              
              
Ho:   u   <=   3  
Ha:    u   >   3  
              
As we can see, this is a    right   tailed test.      
              
df = n - 1 =    48          
              
Getting the test statistic, as              
              
X = sample mean =    4.1          
uo = hypothesized mean =    3          
n = sample size =    49          
s = standard deviation =    6.8          
              
Thus, t = (X - uo) * sqrt(n) / s =    1.132352941 [ANSWER, T VALUE]          


As P = 0.1316 is greater than all the alpha values given,

Reject H0 at equal to NO TEST VALUES. [ANSWER]

NO evidence that µ1 and µ2 differ by more than 3. [ANSWER]
              

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote