Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Please show manually step by step all work in deriving your answer for the next

ID: 3150740 • Letter: P

Question

Please show manually step by step all work in deriving your answer for the next 5 operations (no software)

North University (NU) wants to determine if its students spend more time studying than do students attending Busse University (BU).   Random samples of 9 students are taken at BU and NU. The two samples reveal the following data:

Daily hours studying at NU 6 3 0 3 6 0 2 3 4

Daily hours studying at BU 2 2 3 2 3 2 1 1 2

At the .05 level of significance, is there evidence a NU student spends more time studying on average than a BU student? (Assume both populations of student time spent studying follow a normal distribution and have equal variances.)

Explanation / Answer

Formulating the null and alternative hypotheses,              
              
Ho:   u1 - u2   <=   0  
Ha:   u1 - u2   >   0  

At level of significance =    0.05          

As we can see, this is a    right   tailed test.      
Calculating the means of each group,              
              
X1 =    3          
X2 =    2          
              
Calculating the standard deviations of each group,              
              
s1 =    2.179449472          
s2 =    0.707106781          
              
Thus, the pooled standard deviation is given by              
              
S = sqrt[((n1 - 1)s1^2 + (n2 - 1)(s2^2))/(n1 + n2 - 2)]               
              
As n1 =    9   , n2 =    9  
              
Then              
              
S =    1.620185175          
              
Thus, the standard error of the difference is              
              
Sd = S sqrt (1/n1 + 1/n2) =    0.763762616          
              
As ud = the hypothesized difference between means =    0   , then      
              
t = [X1 - X2 - ud]/Sd =    1.309307341          
              
Getting the critical value using table/technology,              
df = n1 + n2 - 2 =    16          
tcrit =    +   1.745883676      
              
Getting the p value using technology,              
              
p =    0.104460949          
              
As t < 1.746, and P > 0.05, we   FAIL TO REJECT THE NULL HYPOTHESIS.          

Hence, there is no significant evidence that an NU student spend more time studying on average than a BU student. [CONCLUSION]

*****************************************************

Hi! If you use another method/formula in calculating the degrees of freedom in this t-test, please resubmit this question together with the formula/method you use in determining the degrees of freedom. That way we can continue helping you! Thanks!

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote