Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

A random sample of 22 people employed by the Florida state authority established

ID: 3151265 • Letter: A

Question

A random sample of 22 people employed by the Florida state authority established they earned an average wage (including benefits) of $61.00 per hour. The sample standard deviation was $5.66 per hour. (Use z Distribution Table.)

a. What is the best estimate of the population mean? Estimated population mean $

b. Develop a 98% confidence interval for the population mean wage (including benefits) for these employees. (Round your answers to 2 decimal places.) Confidence interval for the population mean wage is between and .

c. How large a sample is needed to assess the population mean with an allowable error of $1.00 at 95% confidence? (Round up your answer to the next whole number.) Sample size

Explanation / Answer

A)

It is the sample mean,

X = $61.00 [ANSWER]

************************

b)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.01          
X = sample mean =    61          
z(alpha/2) = critical z for the confidence interval =    2.33          
s = sample standard deviation =    5.66          
n = sample size =    22          
              
Thus,              
Margin of Error E =    2.811648407          
Lower bound =    58.18835159          
Upper bound =    63.81164841          
              
Thus, the confidence interval is              
              
(   58.18835159   ,   63.81164841   ) [ANSWER]

*********************

c)

Note that      
      
n = z(alpha/2)^2 s^2 / E^2      
      
where      
      
alpha/2 = (1 - confidence level)/2 =    0.025  
      
Using a table/technology,      
      
z(alpha/2) =    1.96  
      
Also,      
      
s = sample standard deviation =    5.66  
E = margin of error =    1  
      
Thus,      
      
n =    123.067961  
      
Rounding up,      
      
n =    124   [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote