Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Testing a random number generator. A random number generator is supposed to prod

ID: 3153053 • Letter: T

Question

Testing a random number generator. A random number generator is supposed to produce random numbers that are uniformly distributed on the interval from 0 to 1. If this is true, the numbers generated come from a population with mu = 0.5 and sigma = 0.2887. A command to generate 100 random numbers gives outcomes with mean x^overbar = 0.4365. Assume that the population it remains fixed. We want to test H_0: mu = 0.5 H_a: mu NotEqual 0.5 Calculate the value of the z test statistic. Use Table C: is z significant at the 5% level (a = 0.05)? Use Table C: is z significant at the 1% level (a = 0.01)? Between which two Normal critical values z* in the bottom row of Table C does z lie. Between what two numbers does the P-value lie? Does the test give good evidence against the null hypothesis?

Explanation / Answer

A)

Formulating the null and alternative hypotheses,              
              
Ho:   u   =   0.5  
Ha:    u   =/   0.5  
              
As we can see, this is a    two   tailed test.      
Getting the test statistic, as              
              
X = sample mean =    0.4365          
uo = hypothesized mean =    0.5          
n = sample size =    100          
s = standard deviation =    0.2887          
              
Thus, z = (X - uo) * sqrt(n) / s =    -2.199515068 = -2.20 [ANSWER]

**********************************

b)

As for alpha = 0.05 two tailed,

zcrit = +/- 1.96

then as |Z| > 1.96, YES, IT IS SIGNIFICANT. [ANSWER]

**************************

c)

As for alpha = 0.01 two tailed,

zcrit = +/- 2.58

then as |Z| < 2.58, NO, IT IS NOT SIGNIFICANT. [ANSWER]

***************************

d)
                  
It lies between 1.96 and 2.33.

Hence, 0.02 < P < 0.05.

As this is a small P value at 0.05 level, yes, it gives good evidence against the null hypothesis.

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote