Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The level of nitrogen oxide (NOX) in the exhaust of a certain car model varies a

ID: 3155329 • Letter: T

Question

The level of nitrogen oxide (NOX) in the exhaust of a certain car model varies according to a normal distribution with a mean of 1.4 gal/mi, and a standard deviation of 0.3 gal/mi. In other words, if G is the NOX emission level for a car, then G ~ N(mu =1.4,sigma = 0.3) a. Let G be the variable for the mean NOX emission level for a sample of size n these cars of these cars 1. What is the distribution type for the statistic G ?Why? 2. Is this distribution exact or approximate? Why? 3. What is the mean of G ? 4. Suppose that a car rental company has a fleet of 125 such cars. What is the standard deviation of G for that fleet? b. What is the probability that, for a single car, the NOX emission will exceed 2.1 gal/mi? c. What is the probability that, for the fleet of 125 cars, the mean NOX emission will exceed 2.1 gal/mi?

Explanation / Answer

1.

As the original distribution is normal, then G is also normal.

2.

It is exact, as the original distrbution is normal.

3.

By central limit theorem, it has the same mean, 1.4.

4.

By central limit theorem,

sigma(G) = sigma/sqrt(n) = 0.3/sqrt(125) = 0.026832816 [ANSWER]

***************************

b.

We first get the z score for the critical value. As z = (x - u) / s, then as          
          
x = critical value =    2.1      
u = mean =    1.4      
          
s = standard deviation =    0.3      
          
Thus,          
          
z = (x - u) / s =    2.333333333      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   2.333333333   ) =    0.009815329 [ANSWER]

****************************

c)

We first get the z score for the critical value. As z = (x - u) sqrt(n) / s, then as          
          
x = critical value =    2.1      
u = mean =    1.4      
n = sample size =    125      
s = standard deviation =    0.3      
          
Thus,          
          
z = (x - u) * sqrt(n) / s =    26.08745974      
          
Thus, using a table/technology, the right tailed area of this is          
          
P(z >   26.08745974   ) =    0 [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote