Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

The average cholesterol level is generally accepted to be 265 mg/dl. Due to incr

ID: 3155425 • Letter: T

Question

The average cholesterol level is generally accepted to be 265 mg/dl. Due to increasing awareness regarding the importance of diet, a cardiologist believes that the average cholesterol level is different from 265. The cardiologist collects a random sample of 625 obese patients. The following sample statistics are computed: = 270 mg/Dl, s = 50 mg/DI

a) Conduct the appropriate hypothesis test at level = 0.05

b) Compute the p-value for this test statistic.   

c) Compute a 95% confidence interval for the mean cholesterol level.   

Explanation / Answer

a)

Formulating the null and alternative hypotheses,              
              
Ho:   u   =   265  
Ha:    u   =/   265  
              
As we can see, this is a    two   tailed test.      
              
Thus, getting the critical z, as alpha =    0.05   ,      
alpha/2 =    0.025          
zcrit =    +/-   1.959963985      
              
Getting the test statistic, as              
              
X = sample mean =    270          
uo = hypothesized mean =    265          
n = sample size =    625          
s = standard deviation =    50          
              
Thus, z = (X - uo) * sqrt(n) / s =    2.5      
As |z| > 1.96, we   REJECT THE NULL HYPOTHESIS.  

Hence, there is significant evidence that the average cholesterol level is different from 265. [CONCLUSION]

*******************************

b)  
              
Also, the p value is, as this is two tailed,              
              
p =    0.012419331   [ANSWER, P VALUE]

****************************

c)

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    270          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    50          
n = sample size =    625          
              
Thus,              
Margin of Error E =    3.919927969          
Lower bound =    266.080072          
Upper bound =    273.919928          
              
Thus, the confidence interval is              
              
(   266.080072   ,   273.919928   ) [ANSWER]
      
              

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote