Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Below you can find the basic statistics for a sample of the birth weights of ful

ID: 3155625 • Letter: B

Question

Below you can find the basic statistics for a sample of the birth weights of full-term infants who ultimately died of AIDS.

Sample Mean (X-bar) = 2890 grams

Sample Standard Deviation (s) =683

Sample Size (n) = 21

Find the two-sided 95% confidence interval for the true mean of the birth weight for the population of full-term infants who ultimately died of AIDS.

What would be the 95% confidence interval if instead of just knowing the sample standard deviation (s=682.87) you would know the true value of the standard deviation of the population =682.87?

Explanation / Answer

a)

Note that              
Margin of Error E = t(alpha/2) * s / sqrt(n)              
Lower Bound = X - t(alpha/2) * s / sqrt(n)              
Upper Bound = X + t(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    2890          
t(alpha/2) = critical t for the confidence interval =    2.085963447          
s = sample standard deviation =    683          
n = sample size =    21          
df = n - 1 =    20          
Thus,              
Margin of Error E =    310.8978726          
Lower bound =    2579.102127          
Upper bound =    3200.897873          
              
Thus, the confidence interval is              
              
(   2579.102127   ,   3200.897873   ) [ANSWER]

********************************

b)

In that case, we can use the z distirbution.

Note that              
Margin of Error E = z(alpha/2) * s / sqrt(n)              
Lower Bound = X - z(alpha/2) * s / sqrt(n)              
Upper Bound = X + z(alpha/2) * s / sqrt(n)              
              
where              
alpha/2 = (1 - confidence level)/2 =    0.025          
X = sample mean =    2890          
z(alpha/2) = critical z for the confidence interval =    1.959963985          
s = sample standard deviation =    682.87          
n = sample size =    21          
              
Thus,              
Margin of Error E =    292.0629566          
Lower bound =    2597.937043          
Upper bound =    3182.062957          
              
Thus, the confidence interval is              
              
(   2597.937043   ,   3182.062957   ) [ANSWER]

Hire Me For All Your Tutoring Needs
Integrity-first tutoring: clear explanations, guidance, and feedback.
Drop an Email at
drjack9650@gmail.com
Chat Now And Get Quote