Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

Last year\'s records of auto accidents occurring on a given section of highway w

ID: 3156979 • Letter: L

Question

Last year's records of auto accidents occurring on a given section of highway were classified according to whether the resulting damage was $1000 or more and to whether a physical injury resulted from the accident. The data follows. (a) Estimate the true proportion of accidents involving injuries when the damage was $1000 or more for similar sections of highway. (Round your answer to three decimal places.) Find the 95% margin of error. (Round your answer to three decimal places.) (b) Estimate the true difference in the proportion of accidents involving injuries for accidents with damage under $1000 and those with damage of $1000 or more. Use a 95% confidence interval. (Round your answers to three decimal places.) to

Explanation / Answer

a)

Here,

p^ = x2/n2 = 25/49 = 0.510204082 [ANSWER]

*************************

Note that              
              
p^ = point estimate of the population proportion = x / n =    0.510204082          
              
Also, we get the standard error of p, sp:              
              
sp = sqrt[p^ (1 - p^) / n] =    0.071413695          
              
Now, for the critical z,              
alpha/2 =   0.025          
Thus, z(alpha/2) =    1.959963985          

Thus,              
Margin of error = z(alpha/2)*sp =    0.13996827   [ANSWER]

************************

b)

Getting p1^ and p2^,          
          
p1^ = x1/n1 =    0.242424242      
p2 = x2/n2 =    0.510204082      
          
Also, the standard error of the difference is          
          
sd = sqrt[ p1 (1 - p1) / n1 + p2 (1 - p2) / n2] =    0.103272507      
          
For the   95%   confidence level, then  
          
alpha/2 = (1 - confidence level)/2 =    0.025      
z(alpha/2) =    1.959963985      
Margin of error = z(alpha/2)*sd =    0.202410394      
lower bound = p1^ - p2^ - z(alpha/2) * sd =    -0.470190233      
upper bound = p1^ - p2^ + z(alpha/2) * sd =    -0.065369445      
          
Thus, the confidence interval is          
          
(   -0.470190233   ,   -0.065369445 ) [ANSWER]