Academic Integrity: tutoring, explanations, and feedback — we don’t complete graded work or submit on a student’s behalf.

++++++++PLEASE SHOW ALL WORK and STEPS++++++ For the data given in DATA FILE , a

ID: 3157314 • Letter: #

Question

++++++++PLEASE SHOW ALL WORK and STEPS++++++

For the data given in DATA FILE, assume a model of the form:

y = 0 + 1x1 + 2x2

a) Find the least-squares prediction equation for y.

b) Conduct a test to determine if x1, is a useful linear predictor of y. Use = .05.

c) Form a 95% confidence interval for 2. Interpret the result.

d) Find and interpret R2 and Ra2.

e) Is the overall model statistically useful for predicting weight change? Test using = .05.

++++++DATA FILE BELOW++++++

Trial

Y

X1

X2

1

-6

0

28.5

2

-5

2.5

27.5

3

-4.5

5

27.5

4

0

0

32.5

5

2

0

32

6

3.5

1

30

7

-2

2.5

34

8

-2.5

10

36.5

9

-3.5

20

28.5

10

-2.5

12.5

29

11

-3

28

28

12

-8.5

30

28

13

-3.5

18

30

14

-3

15

31

15

-2.5

17.5

30

16

-0.5

18

22

17

0

23

22.5

18

1

20

24

19

2

15

23

20

6

31

21

21

2

15

24

22

2

21

23

23

2.5

30

22.5

24

2.5

33

23

25

0

27.5

30.5

26

0.5

29

31

27

-1

32.5

30

28

-3

42

24

29

-2.5

39

25

30

-2

35.5

25

31

0.5

39

20

32

5.5

39

18.5

33

7.5

50

15

34

0

62.5

8

35

0

63

8

36

2

69

7

37

8

42.5

7.5

38

9

59

8.5

39

12

52.5

8

40

8.5

75

6

41

10.5

72.5

6.5

42

14

69

7

Trial

Y

X1

X2

1

-6

0

28.5

2

-5

2.5

27.5

3

-4.5

5

27.5

4

0

0

32.5

5

2

0

32

6

3.5

1

30

7

-2

2.5

34

8

-2.5

10

36.5

9

-3.5

20

28.5

10

-2.5

12.5

29

11

-3

28

28

12

-8.5

30

28

13

-3.5

18

30

14

-3

15

31

15

-2.5

17.5

30

16

-0.5

18

22

17

0

23

22.5

18

1

20

24

19

2

15

23

20

6

31

21

21

2

15

24

22

2

21

23

23

2.5

30

22.5

24

2.5

33

23

25

0

27.5

30.5

26

0.5

29

31

27

-1

32.5

30

28

-3

42

24

29

-2.5

39

25

30

-2

35.5

25

31

0.5

39

20

32

5.5

39

18.5

33

7.5

50

15

34

0

62.5

8

35

0

63

8

36

2

69

7

37

8

42.5

7.5

38

9

59

8.5

39

12

52.5

8

40

8.5

75

6

41

10.5

72.5

6.5

42

14

69

7

Explanation / Answer

For the data given in DATA FILE, assume a model of the form:

y = 0 + 1x1 + 2x2

All the questions we can done using MINITAB.

Steps :

Enter all the data in MINITAB sheet --> Stat --> Regression -->Regression --> Response : Y --> Predictors : X1 and X2 --> Results : select second option --> ok --> ok

a) Find the least-squares prediction equation for y.

The regression equation is
Y = 12.2 - 0.0477 X1 - 0.442 X2

b) Conduct a test to determine if x1, is a useful linear predictor of y. Use = .05.

Predictor Coef SE Coef T P
Constant 12.154 4.173 2.91 0.006
X1 -0.04768 0.05153 -0.93 0.361
X2 -0.4420 0.1217 -3.63 0.001


S = 3.33537 R-Sq = 45.7% R-Sq(adj) = 42.7%

Here we have to test the hypothesis that,

H0 : B = 0 Vs B not= 0

where B is population slope for X1.

The test statistic t =-0.93

P-value = 0.361

P-value > alpha (0.05)

Accept H0 at 5% level of significance.

Conclusion : The population slope for X1 is 0.

c) Form a 95% confidence interval for 2. Interpret the result.

95% confidence interval for B2 is,

b - E < B < b + E

where b is sample slope for X2 = -0.442

E = tc*SEb

where tc is critical value for t-distribution.

tc we can find by using EXCEL.

syntax is,

=TINV(probability, deg_freedom)

probability = 1 - c

c is confidence level = 95% = 0.95

deg_freedom = n-2 = 42-2= 40

tc = 2.021

SEb = 0.1217

E = 2.021*0.1217 = 0.246

lower limit = b - E = -0.442 - 0.246 = -0.688

upper limit = b + E = -0.442 + 0.246 = -0.196

95% confidence interval for population slope is (-0.688, -0.196).

d) Find and interpret R2 and Ra2.

R2 = 45.7%

It expresses the proportion of the variation in y which is explained by variation in x2.

e) Is the overall model statistically useful for predicting weight change? Test using = .05.

Here we have to test the hypothesis that,

H0 : B1 = B2 = 0   

H1 : Atleast one of the slope is differ than 0.


Analysis of Variance

Source DF SS MS F P
Regression 2 346.08 173.04 15.55 0.000
Residual Error 37 411.61 11.12
Total 39 757.69

Test statistic F = 15.55

P-value = 0.000

P-value < alpha

Reject H0 at 5% level of significance.

COnclusion : Atleast one of the slope is differ than 0.